Skip to content

Commit

Permalink
Merge pull request #1155 from sarthakpati/master
Browse files Browse the repository at this point in the history
Version update and documentation updates and some minor fixes
  • Loading branch information
AlexanderGetka-cbica authored Jul 2, 2020
2 parents d6ef189 + 44fd82d commit 08415d4
Show file tree
Hide file tree
Showing 70 changed files with 503 additions and 418 deletions.
83 changes: 50 additions & 33 deletions 2_GettingStarted.txt
Original file line number Diff line number Diff line change
Expand Up @@ -70,9 +70,9 @@ In addition, CaPTk offers the ability to extract and visualize commonly used mea

References:

-# J.M.Soares, P.Marques, V.Alves, N.Sousa. "A hitchhiker's guide to diffusion tensor imaging", Front Neurosci. 7:31, 2013. DOI: 10.33
-# J.M.Soares, P.Marques, V.Alves, N.Sousa. "A hitchhiker's guide to diffusion tensor imaging", Front Neurosci. 7:31, 2013, DOI: 10.33
fnins.2013.00031
-# E.S.Paulson, K.M.Schmainda, "Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors", Radiology. 249(2):601-613, 2008. DOI: 10.1148/radiol.2492071659
-# E.S.Paulson, K.M.Schmainda, "Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors", Radiology. 249(2):601-613, 2008, DOI: 10.1148/radiol.2492071659

--------

Expand Down Expand Up @@ -182,13 +182,13 @@ Application-specific tissue types are automatically enabled when the correspondi

References:

-# A.Gooya, K.M.Pohl, M.Billelo, G.Biros, C. Davatzikos, "Joint segmentation and deformable registration of brain scans guided by a tumog rowth model", Med Image Comput Comput Assist Interv. 14(Pt 2):532-40, 2011. DOI:10.1007/978-3-642-23629-7_65
-# A.Gooya, K.M.Pohl, M.Bilello, L.Cirillo, G.Biros, E.R.Melhem, C.Davatzikos, "GLISTR: glioma image segmentation and registration", IEET rans Med Imaging. 31(10):1941-54, 2012. DOI:10.1109/TMI.2012.2210558
-# D.Kwon, R.T.Shinohara, H.Akbari, C.Davatzikos, "Combining Generative Models for Multifocal Glioma Segmentation and Registration", MeI mage Comput Comput Assist Interv. 17(Pt 1):763-70, 2014. DOI:10.1007/978-3-319-10404-1_95
-# A.Gooya, K.M.Pohl, M.Billelo, G.Biros, C. Davatzikos, "Joint segmentation and deformable registration of brain scans guided by a tumog rowth model", Med Image Comput Comput Assist Interv. 14(Pt 2):532-40, 2011, DOI:10.1007/978-3-642-23629-7_65
-# A.Gooya, K.M.Pohl, M.Bilello, L.Cirillo, G.Biros, E.R.Melhem, C.Davatzikos, "GLISTR: glioma image segmentation and registration", IEET rans Med Imaging. 31(10):1941-54, 2012, DOI:10.1109/TMI.2012.2210558
-# D.Kwon, R.T.Shinohara, H.Akbari, C.Davatzikos, "Combining Generative Models for Multifocal Glioma Segmentation and Registration", MeI mage Comput Comput Assist Interv. 17(Pt 1):763-70, 2014, DOI:10.1007/978-3-319-10404-1_95
-# S.Bakas, K.Zeng, A.Sotiras, S.Rathore, H.Akbari, B.Gaonkar, M.Rozycki, S.Pati, C.Davatzikos, "Segmentation of gliomas in multimodam agnetic resonance imaging volumes based on a hybrid generative-discriminative framework", In Proc. Multimodal Brain Tumor Segmentation (BraTS) Challenge. 4:5-12, 2015.
-# S.Bakas, K.Zeng, A.Sotiras, S.Rathore, H.Akbari, B.Gaonkar, M.Rozycki, S.Pati, C.Davatzikos, "GLISTRboost: combining multimodal MRs egmentation, registration, and biophysical tumor growth modeling with gradient boosting machines for glioma segmentation", Brainlesion (2015). 9556:144-155, 2016. DOI:10.1007/978-3-319-30858-6_1
-# S.Bakas, H.Akbari, A.Sotiras, M.Bilello, M.Rozycki, J.Kirby, J.Freymann, K.Farahani, C.Davatzikos, "Advancing The Cancer Genome Atlag lioma MRI collections with expert segmentation labels and radiomic features", Nature Scientific Data 4:170117, 2017. DOI:10.103s data.2017.117
-# D.Kwon, M.Niethammer, H.Akbari, M.Bilello, C.Davatzikos, K.M.Pohl, "PORTR: Pre-Operative and Post-Recurrence Brain Tumor Registration", IEEE Trans Med Imaging. 33(3):651-667, 2014. DOI:10.1109/TMI.2013.2293478
-# S.Bakas, K.Zeng, A.Sotiras, S.Rathore, H.Akbari, B.Gaonkar, M.Rozycki, S.Pati, C.Davatzikos, "GLISTRboost: combining multimodal MRs egmentation, registration, and biophysical tumor growth modeling with gradient boosting machines for glioma segmentation", Brainlesion (2015). 9556:144-155, 2016, DOI:10.1007/978-3-319-30858-6_1
-# S.Bakas, H.Akbari, A.Sotiras, M.Bilello, M.Rozycki, J.Kirby, J.Freymann, K.Farahani, C.Davatzikos, "Advancing The Cancer Genome Atlag lioma MRI collections with expert segmentation labels and radiomic features", Nature Scientific Data 4:170117, 2017, DOI:10.103s data.2017.117
-# D.Kwon, M.Niethammer, H.Akbari, M.Bilello, C.Davatzikos, K.M.Pohl, "PORTR: Pre-Operative and Post-Recurrence Brain Tumor Registration", IEEE Trans Med Imaging. 33(3):651-667, 2014, DOI:10.1109/TMI.2013.2293478

--------

Expand Down Expand Up @@ -245,33 +245,48 @@ These are the keyboard shortcuts available on CaPTk:

\section gs_utilities Utilities (Command-line only)

To make pipeline construction using CaPTk easier, a bunch of utilities have been provided. They include
To make pipeline construction using CaPTk easier, a bunch of utilities have been provided:

-# Resizing
-# DICOM conversion
-# Sanity checking
-# Image header information
-# Resampling
-# Image information
-# Unique values in image
-# Changing pixel values.

For full details, run the command:

\verbatim
Utilities.exe -u
\endverbatim
-# Get smallest bounding box in mask (optional isotropic bounding box)
-# Test 2 images
-# Create mask from threshold
-# DICOM to NIfTI conversion
-# NIfTI to DICOM & DICOM-Seg conversion
-# Re-orient image
-# Cast image to another pixel type
-# Thresholding:
- Below
- Above
- Above & Below
- Otsu
- Binary
-# Convert file formats
-# Extract Image Series from Joined stack and vice-versa (4D <-> 3D)
-# Transform coordinates from world to image and vice-versa
-# Label similarity Metrics between 2 label images: pure mathematical formulations are given as output
-# BraTS similarity Metrics between 2 label images: special considerations for metrics are done in this mode because output needs to be BraTS-compliant.
-# Collect information from all images in a directory and put it in CSV

For a full list of this functionality and more details, please see the corresponding [How-To page](ht_utilities.html).

--------

\section gs_preprocessing Pre-processing
Image pre-processing is essential to quantitative image analysis. CaPTk pre-processing tools available under the "Preprocessing" menu are fully-parameterizable and comprise:

-<b>Denoising.</b> Intensity noise reduction in regions of uniform intensity profile is offered through a low-level image processing method, namely Smallest Univalue Segment Assimilating Nucleus (SUSAN) [1]. This is a custom implementation and does <b>NOT</b> call out to the original implementation distributed by FSL.
-<b>Co-registration.</b> Registration of various images to the same anatomical template, for examining anatomically aligned imaging signals in tandem and at the voxel level, is done using the Greedy Registration algorithm [5].
-<b>Bias correction.</b> Correction for magnetic field inhomogeneity is provided using a non-parametric non-uniform intensity normalization [2].
-<b>Intensity normalization.</b> Conversion of signals across modalities to comparable quantities using histogram matching [4].
-<b>Z-Scoring normalization.</b> Images are normalized using a z-scoring mechanism with option to do the normalization within the region of interest or across the entire image. In addition, there is an option to remove outliers & noise from the image by removing a certain percentage of the top and bottom intensity ranges [6].
-<b>Histogram Matching</b>
-<b>Skull Stripping (Deep Learning based)</b>
-<b>Mammogram Pre-processing</b>
- <b>Denoising.</b> Intensity noise reduction in regions of uniform intensity profile is offered through a low-level image processing method, namely Smallest Univalue Segment Assimilating Nucleus (SUSAN) [1]. This is a custom implementation and does <b>NOT</b> call out to the original implementation distributed by FSL.
- <b>Co-registration.</b> Registration of various images to the same anatomical template, for examining anatomically aligned imaging signals in tandem and at the voxel level, is done using the Greedy Registration algorithm [5].
- <b>Bias correction.</b> Correction for magnetic field inhomogeneity is provided using a non-parametric non-uniform intensity normalization [2].
- <b>Intensity normalization.</b> Conversion of signals across modalities to comparable quantities using histogram matching [4].
- <b>Z-Scoring normalization.</b> Images are normalized using a z-scoring mechanism with option to do the normalization within the region of interest or across the entire image. In addition, there is an option to remove outliers & noise from the image by removing a certain percentage of the top and bottom intensity ranges [6].
- <b>Histogram Matching</b>
- <b>Skull Stripping (Deep Learning based)</b>
- <b>Mammogram Pre-processing</b>
- <b>BraTS Pre-processing Pipeline</b>


<B>NOTE:</B> An extended set of algorithms are available via the command line utility <b>Preprocessing</b>. For full details, run the command:
Expand All @@ -289,12 +304,13 @@ Preprocessing.exe -u

References:

-# S.M.Smith, J.M.Brady, "SUSAN - a new approach to low level image processing", Int. J. Comput. Vis. 23(1):45-78, 1997. DOI:10.102A :1007963824710
-# N.J.Tustison, B.B.Avants, P.A.Cook, Y.Zheng, A.Egan, P.A.Yushkevich, J.C.Gee, "N4ITK: Improved N3 Bias Correction", IEEE Trans MeI maging. 29(6):1310-20, 2010. doi: 10.1109/TMI.2010.2046908
-# S.Bauer, L.P.Nolte, M.Reyes, "Skull-stripping for Tumor-bearing Brain Images", arXiv. abs/1204.0357, 2012.
-# L.G.Nyul, J.K.Udupa, X.Zhang, "New Variants of a Method of MRI Scale Standardization", IEEE Trans Med Imaging. 19(2):143-50, 2000D OI:10.1109/42.836373
-# P.A.Yushkevich, J.Pluta, H.Wang, L.E.Wisse, S.Das, D.Wolk, "Fast Automatic Segmentation of Hippocampal Subfields and Medical Temporal Lobe Subregions in 3 Tesla and 7 Tesla MRI, Alzheimer's & Dementia: The Journal of Alzheimer's Association, 12(7), P126-127
-# T.Rohlfing, N.M.Zahr, E.V.Sullivan, A.Pfefferbaum, "The SRI24 multichannel atlas of normal adult human brain structure", Human Brain Mapping, 31(5):798-819, 2010. DOI:10.1002/hbm.20906
-# S.M.Smith, J.M.Brady, "SUSAN - a new approach to low level image processing", Int. J. Comput. Vis. 23(1):45-78, 1997, DOI:10.102A :1007963824710
-# N.J.Tustison, B.B.Avants, P.A.Cook, Y.Zheng, A.Egan, P.A.Yushkevich, J.C.Gee, "N4ITK: Improved N3 Bias Correction", IEEE Trans MeI maging. 29(6):1310-20, 2010, DOI: 10.1109/TMI.2010.2046908
-# S.P.Thakur, J.Doshi, S.Pati, S.M.Ha, C.Sako, S.Talbar, U.Kulkarni, C.Davatzikos, G.Erus, S.Bakas, "Brain Extraction on MRI Scans in Presence of Diffuse Glioma:
Multi-institutional Performance Evaluation of Deep Learning Methods and Robust Modality-Agnostic Training", NeuroImage 2020, DOI:10.1016/j.neuroimage.2020.117081
-# L.G.Nyul, J.K.Udupa, X.Zhang, "New Variants of a Method of MRI Scale Standardization", IEEE Trans Med Imaging. 19(2):143-50, 2000, DOI:10.1109/42.836373
-# P.A.Yushkevich, J.Pluta, H.Wang, L.E.Wisse, S.Das, D.Wolk, "Fast Automatic Segmentation of Hippocampal Subfields and Medical Temporal Lobe Subregions in 3 Tesla and 7 Tesla MRI", Alzheimer's & Dementia: The Journal of Alzheimer's Association, 12(7), P126-127, DOI:10.1016/j.jalz.2016.06.205
-# T.Rohlfing, N.M.Zahr, E.V.Sullivan, A.Pfefferbaum, "The SRI24 multichannel atlas of normal adult human brain structure", Human Brain Mapping, 31(5):798-819, 2010, DOI:10.1002/hbm.20906

--------

Expand Down Expand Up @@ -372,6 +388,7 @@ Detailed explanation of using the command line is available in the \ref How_To_G
| Windows | 7, 8, 10 | XP, Vista |
| Linux | Ubuntu 16.04, 18.04; Debian 9, CentOS 7 (source build) | Ubuntu 14.04; CentOS 6 |
| macOS | 10.13, 10.14 | 10.12 |
| Docker | N.A. | N.A. |

\section gs_FAQ_2 What DICOM images are currently supported by CaPTk?

Expand Down
Loading

0 comments on commit 08415d4

Please sign in to comment.