Given 1 second of traffic and an agent's starting position, predict its trajectory 8 seconds in the future
name | Pretrained CNN | Backbone CNN | Type | Learning Rate | Momentum | minFDE_val | minADE_val | Epochs | Batch Size | Mixed Precision |
---|---|---|---|---|---|---|---|---|---|---|
simple_cnn_1 | Yes | mobile-net | SimpleCNN | 0.0001 | 0.9 | 228 | 1622 | 160 | 16 | N |
simple_cnn_1 | Yes | mobile-net | SimpleCNN | 0.0001 | 0.9 | 266 | 2158 | 92 | 16 | N |
simple_cnn_2 | Yes | mobile-net | SimpleCNN | 0.001 | 0.9 | 399 | 3032 | 92 | 16 | N |
simple_cnn_3 | Yes | mobile-net | SimpleCNN | 0.0001 | 0.9 | 92 | 28 | Y |
name to id:
- simple_cnn_1: simple_cnn_rofjQV2NUK1trG6vmlqOSEDd7bHr9OxUHzAVEjV7d
- simple_cnn_2: simple_cnn_rVW9hZ6wZcpHqLIen3Tio1r8haPBGTmtcUitSfVfJ
- simple_cnn_3: simple_cnn_rSFaNYXVMP9P8hPScrKBmgGDA0oZSgELrCYk6Iqod
- install python 3.10
- (optional) setup virtual environment
linux/mac:
python -m venv .env
source .env/bin/activate
windows:
python -m venv .env
./.env/Scripts/activate
- install dependencies
python -m pip install requirements.txt
mkdir -p data/sets/nuscenes # Make the directory to store the nuScenes dataset in.
wget https://www.nuscenes.org/data/v1.0-mini.tgz # Download the nuScenes mini split.
tar -xf v1.0-mini.tgz -C data/sets/nuscenes # Uncompress the nuScenes mini split.
(for windows the easiest way is to just run these commands in wsl)
- Open the downloads page and go to
Full Dataset (v1.0) > Mini
and click US - download US Map expansion pack (v1.3)
- decompress both packages and drop
basemap/
,expansion/
andprediction/
(all from the maps expansion pack) intov1.0-mini/maps/