-
-
Notifications
You must be signed in to change notification settings - Fork 179
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
201 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,196 @@ | ||
# Copyright (c) Facebook, Inc. and its affiliates. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
# | ||
# | ||
import torch | ||
import torch.nn as nn | ||
|
||
def weights_init_reg(m): | ||
if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): | ||
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | ||
m.weight.data.normal_(0, math.sqrt(2. / n)) | ||
if m.bias is not None: | ||
m.bias.data.zero_() | ||
elif isinstance(m, nn.BatchNorm2d): | ||
m.weight.data.fill_(1) | ||
m.bias.data.zero_() | ||
elif isinstance(m, nn.Linear): | ||
n = m.weight.size(1) | ||
m.weight.data.normal_(0, 0.01) | ||
m.bias.data.zero_() | ||
|
||
|
||
class AddCoords(nn.Module): | ||
|
||
def __init__(self, with_r=False): | ||
super().__init__() | ||
self.with_r = with_r | ||
|
||
def forward(self, input_tensor): | ||
""" | ||
Args: | ||
input_tensor: shape(batch, channel, x_dim, y_dim) | ||
""" | ||
batch_size, _, x_dim, y_dim = input_tensor.size() | ||
|
||
xx_channel = torch.arange(x_dim).repeat(1, y_dim, 1) | ||
yy_channel = torch.arange(y_dim).repeat(1, x_dim, 1).transpose(1, 2) | ||
|
||
xx_channel = xx_channel.float() / (x_dim - 1) | ||
yy_channel = yy_channel.float() / (y_dim - 1) | ||
|
||
xx_channel = xx_channel * 2 - 1 | ||
yy_channel = yy_channel * 2 - 1 | ||
|
||
xx_channel = xx_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3) | ||
yy_channel = yy_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3) | ||
|
||
xx_channel, yy_channel = xx_channel.type_as(input_tensor), yy_channel.type_as(input_tensor) | ||
ret = torch.cat([ | ||
input_tensor, | ||
xx_channel, | ||
yy_channel], dim=1) | ||
|
||
if self.with_r: | ||
rr = torch.sqrt(torch.pow(xx_channel - 0.5, 2) + torch.pow(yy_channel - 0.5, 2)) | ||
ret = torch.cat([ret, rr], dim=1) | ||
|
||
return ret | ||
|
||
|
||
class CoordConv(nn.Module): | ||
|
||
def __init__(self, in_channels, out_channels, with_r=False, **kwargs): | ||
super().__init__() | ||
self.addcoords = AddCoords(with_r=with_r) | ||
in_size = in_channels+2 | ||
if with_r: | ||
in_size += 1 | ||
self.conv = nn.Conv2d(in_size, out_channels, **kwargs) | ||
|
||
def forward(self, x): | ||
ret = self.addcoords(x) | ||
ret = self.conv(ret) | ||
return ret | ||
|
||
def conv_bn(inp, oup, kernels, stride, pad): | ||
return nn.Sequential( | ||
nn.Conv2d(inp, oup, kernels, stride, pad, bias=False), | ||
nn.BatchNorm2d(oup), | ||
nn.ReLU6(inplace=True) | ||
) | ||
|
||
|
||
def conv_1x1_bn(inp, oup): | ||
return nn.Sequential( | ||
nn.Conv2d(inp, oup, 1, 1, 0, bias=False), | ||
nn.BatchNorm2d(oup), | ||
nn.ReLU6(inplace=True) | ||
) | ||
|
||
|
||
class InvertedResidual(nn.Module): | ||
def __init__(self, inp, oup, stride, expand_ratio): | ||
super(InvertedResidual, self).__init__() | ||
self.stride = stride | ||
assert stride in [1, 2] | ||
|
||
hidden_dim = round(inp * expand_ratio) | ||
self.use_res_connect = self.stride == 1 and inp == oup | ||
|
||
if expand_ratio == 1: | ||
self.conv = nn.Sequential( | ||
# dw | ||
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False), | ||
nn.BatchNorm2d(hidden_dim), | ||
nn.ReLU6(inplace=True), | ||
# pw-linear | ||
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), | ||
nn.BatchNorm2d(oup), | ||
) | ||
else: | ||
self.conv = nn.Sequential( | ||
# pw | ||
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False), | ||
nn.BatchNorm2d(hidden_dim), | ||
nn.ReLU6(inplace=True), | ||
# dw | ||
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False), | ||
nn.BatchNorm2d(hidden_dim), | ||
nn.ReLU6(inplace=True), | ||
# pw-linear | ||
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), | ||
nn.BatchNorm2d(oup), | ||
) | ||
|
||
def forward(self, x): | ||
if self.use_res_connect: | ||
return x + self.conv(x) | ||
else: | ||
return self.conv(x) | ||
|
||
|
||
class MobileNetV2REG(nn.Module): | ||
def __init__(self, input_dim, input_channel, width_mult, pts_num): | ||
super(MobileNetV2REG, self).__init__() | ||
self.pts_num = pts_num | ||
block = InvertedResidual | ||
interverted_residual_setting = [ | ||
# t, c, n, s | ||
[1, 48 , 1, 1], | ||
[2, 48 , 5, 2], | ||
[2, 96 , 1, 2], | ||
[4, 96 , 6, 1], | ||
[2, 16 , 1, 1], | ||
] | ||
|
||
input_channel = int(input_channel * width_mult) | ||
features = [conv_bn(input_dim, input_channel, (3,3), 2, 1)] | ||
# building inverted residual blocks | ||
for t, c, n, s in interverted_residual_setting: | ||
output_channel = int(c * width_mult) | ||
for i in range(n): | ||
if i == 0: stride = s | ||
else : stride = 1 | ||
features.append( block(input_channel, output_channel, stride, expand_ratio=t) ) | ||
input_channel = output_channel | ||
features.append( nn.AdaptiveAvgPool2d( (14,14) ) ) | ||
self.features = nn.Sequential(*features) | ||
|
||
self.S1 = nn.Sequential( | ||
CoordConv(input_channel , input_channel*2, True, kernel_size=3, padding=1), | ||
conv_bn(input_channel*2, input_channel*2, (3,3), 2, 1)) | ||
self.S2 = nn.Sequential( | ||
CoordConv(input_channel*2, input_channel*4, True, kernel_size=3, padding=1), | ||
conv_bn(input_channel*4, input_channel*8, (7,7), 1, 0)) | ||
|
||
output_neurons = 14*14*input_channel + 7*7*input_channel*2 + input_channel*8 | ||
self.locator = nn.Sequential( | ||
nn.Linear(output_neurons, pts_num*2)) | ||
|
||
#self.classifier = nn.Linear(output_neurons, pts_num) | ||
#self.classifier = nn.Sequential( | ||
# block(input_channel*1, input_channel*4, 1, 2), | ||
# nn.AdaptiveAvgPool2d( (16,12) ), | ||
# block(input_channel*4, input_channel*4, 1, 2), | ||
# nn.AdaptiveAvgPool2d( (8,6) ), | ||
# nn.Conv2d(input_channel*4, pts_num, (8,6))) | ||
|
||
self.apply( weights_init_reg ) | ||
|
||
def forward(self, x): | ||
batch, C, H, W = x.size() | ||
features = self.features(x) | ||
S1 = self.S1( features ) | ||
S2 = self.S2( S1 ) | ||
tensors = torch.cat((features.view(batch, -1), S1.view(batch, -1), S2.view(batch, -1)), dim=1) | ||
batch_locs = self.locator(tensors).view(batch, self.pts_num, 2) | ||
#batch_scos = self.classifier(tensors).view(batch, self.pts_num, 1) | ||
return batch_locs | ||
|
||
|
||
if __name__ == '__main__': | ||
model = MobileNetV2REG(3, 24, 1, 18) # REG on AFLW |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters