Skip to content

Latest commit

 

History

History

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DeepLabV3

Model description

DeepLabV3 is a semantic segmentation architecture that improves upon DeepLabV2 with several modifications. To handle the problem of segmenting objects at multiple scales, modules are designed which employ atrous convolution in cascade or in parallel to capture multi-scale context by adopting multiple atrous rates.

Step 1: Installing

Install packages

pip3 install 'scipy' 'matplotlib' 'pycocotools' 'opencv-python' 'easydict' 'tqdm'

Step 2: Training

Preparing datasets

Go to visit COCO official website, then select the COCO dataset you want to download.

Take coco2017 dataset as an example, specify /path/to/coco2017 to your COCO path in later training process, the unzipped dataset path structure sholud look like:

coco2017
├── annotations
│   ├── instances_train2017.json
│   ├── instances_val2017.json
│   └── ...
├── train2017
│   ├── 000000000009.jpg
│   ├── 000000000025.jpg
│   └── ...
├── val2017
│   ├── 000000000139.jpg
│   ├── 000000000285.jpg
│   └── ...
├── train2017.txt
├── val2017.txt
└── ...

Training on COCO dataset

bash train_deeplabv3_r50_dist.sh --data-path /path/to/coco2017/ --dataset coco

Reference

Ref: torchvision