Skip to content

Latest commit

 

History

History

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

DenseASPP

Model description

Densely connected Atrous Spatial Pyramid Pooling (DenseASPP), which connects a set of atrous convolutional layers in a dense way. Such that it generates multi-scale features that not only cover a larger scale range, but also cover that scale range densely, without significantly increasing the model size.

Step 1: Installing

Install packages

pip3 install 'scipy' 'matplotlib' 'pycocotools' 'opencv-python' 'easydict' 'tqdm'

Step 2: Training

Preparing datasets

Go to visit COCO official website, then select the COCO dataset you want to download.

Take coco2017 dataset as an example, specify /path/to/coco2017 to your COCO path in later training process, the unzipped dataset path structure sholud look like:

coco2017
├── annotations
│   ├── instances_train2017.json
│   ├── instances_val2017.json
│   └── ...
├── train2017
│   ├── 000000000009.jpg
│   ├── 000000000025.jpg
│   └── ...
├── val2017
│   ├── 000000000139.jpg
│   ├── 000000000285.jpg
│   └── ...
├── train2017.txt
├── val2017.txt
└── ...

Training on COCO dataset

bash train_denseaspp_r50_dist.sh --data-path /path/to/coco2017/ --dataset coco

Reference

Ref: https://github.com/LikeLy-Journey/SegmenTron Ref: torchvision