Skip to content

Latest commit

 

History

History

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

HardNet

Model description

The Harmonic Densely Connected Network to achieve high efficiency in terms of both low MACs and memory traffic. The new network achieves 35%, 36%, 30%, 32%, and 45% inference time reduction compared with FC-DenseNet-103, DenseNet-264, ResNet-50, ResNet-152, and SSD-VGG, respectively.

Step 1: Installing

Install packages

pip3 install 'scipy' 'matplotlib' 'pycocotools' 'opencv-python' 'easydict' 'tqdm'

Step 2: Training

Preparing datasets

Go to visit COCO official website, then select the COCO dataset you want to download.

Take coco2017 dataset as an example, specify /path/to/coco2017 to your COCO path in later training process, the unzipped dataset path structure sholud look like:

coco2017
├── annotations
│   ├── instances_train2017.json
│   ├── instances_val2017.json
│   └── ...
├── train2017
│   ├── 000000000009.jpg
│   ├── 000000000025.jpg
│   └── ...
├── val2017
│   ├── 000000000139.jpg
│   ├── 000000000285.jpg
│   └── ...
├── train2017.txt
├── val2017.txt
└── ...

Training on COCO dataset

bash train_hardnet_dist.sh --data-path /path/to/coco2017/ --dataset coco

Reference

Ref: https://github.com/LikeLy-Journey/SegmenTron Ref: torchvision