Skip to content

Commit

Permalink
Merge pull request #51 from DidierMurilloF/row-column-optimization
Browse files Browse the repository at this point in the history
Add feature to report row-column optimization values in Shiny
  • Loading branch information
DidierMurilloF authored Jul 16, 2024
2 parents 129c5f1 + 1f6fb81 commit a7fa9cd
Show file tree
Hide file tree
Showing 9 changed files with 252 additions and 65 deletions.
2 changes: 1 addition & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
Package: FielDHub
Title: A Shiny App for Design of Experiments in Life Sciences
Version: 1.4.0
Version: 1.4.1
Authors@R:
c(person(given = "Didier",
family = "Murillo",
Expand Down
3 changes: 3 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -12,12 +12,14 @@ export(alpha_lattice)
export(diagonal_arrangement)
export(do_optim)
export(full_factorial)
export(improve_efficiency)
export(incomplete_blocks)
export(latin_square)
export(multi_location_prep)
export(optimized_arrangement)
export(partially_replicated)
export(rectangular_lattice)
export(report_efficiency)
export(row_column)
export(run_app)
export(sparse_allocation)
Expand All @@ -27,6 +29,7 @@ export(split_split_plot)
export(square_lattice)
export(strip_plot)
export(swap_pairs)
export(swap_treatments)
import(shiny)
importFrom(config,get)
importFrom(dplyr,glimpse)
Expand Down
2 changes: 1 addition & 1 deletion R/app_ui.R
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ app_ui <- function(request) {
tagList(
golem_add_external_resources(),
fluidPage(theme = shinythemes::shinytheme("flatly"),
navbarPage(title = "FielDHub v1.4.0",
navbarPage(title = "FielDHub v1.4.1",
tabPanel(
" Welcome!", icon = icon("home", lib = "glyphicon"),
suppressWarnings(
Expand Down
9 changes: 2 additions & 7 deletions R/fct_incomplete_blocks.R
Original file line number Diff line number Diff line change
Expand Up @@ -57,8 +57,8 @@
#' head(ibd2$fieldBook)
#'
#' @export
incomplete_blocks <- function(t = NULL, k = NULL, r = NULL, l = 1, plotNumber = 101, locationNames = NULL,
seed = NULL, data = NULL) {
incomplete_blocks <- function(t = NULL, k = NULL, r = NULL, l = 1, plotNumber = 101,
locationNames = NULL, seed = NULL, data = NULL) {

if (is.null(seed) || !is.numeric(seed)) seed <- runif(1, min = -50000, max = 50000)
set.seed(seed)
Expand Down Expand Up @@ -137,17 +137,12 @@ incomplete_blocks <- function(t = NULL, k = NULL, r = NULL, l = 1, plotNumber =
blocks_model <- list()
for (i in 1:l) {
mydes <- blocksdesign::blocks(treatments = nt, replicates = r, blocks = list(r, b), seed = NULL)
# print("---Blocks Model original design:---")
# print(mydes$Blocks_model)
mydes <- rerandomize_ibd(ibd_design = mydes)
# print("---Blocks Model re-randomized design:---")
# print(mydes$Blocks_model_new)
matdf <- base::data.frame(list(LOCATION = rep(locationNames[i], each = N)))
matdf$PLOT <- as.numeric(unlist(ibd_plots[[i]]))
matdf$BLOCK <- rep(c(1:r), each = nt)
matdf$iBLOCK <- rep(c(1:b), each = k)
matdf$UNIT <- rep(c(1:k), nincblock)
# matdf$TREATMENT <- mydes$Design[,4]
matdf$TREATMENT <- mydes$Design_new[,4]
colnames(matdf) <- c("LOCATION","PLOT", "REP", "IBLOCK", "UNIT", "ENTRY")
outIBD_loc[[i]] <- matdf
Expand Down
148 changes: 104 additions & 44 deletions R/fct_row_column.R
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
#' @param plotNumber Numeric vector with the starting plot number for each location. By default \code{plotNumber = 101}.
#' @param seed (optional) Real number that specifies the starting seed to obtain reproducible designs.
#' @param locationNames (optional) Names for each location.
#' @param iterations Number of iterations for design optimization. By default \code{iterations = 1000}.
#' @param data (optional) Data frame with label list of treatments
#'
#' @author Didier Murillo [aut],
Expand Down Expand Up @@ -67,14 +68,15 @@
#'
#'
#' @export
row_column <- function(t = NULL, nrows = NULL, r = NULL, l = 1, plotNumber= 101, locationNames = NULL,
seed = NULL, data = NULL) {
row_column <- function(t = NULL, nrows = NULL, r = NULL, l = 1, plotNumber= 101,
locationNames = NULL, seed = NULL, iterations = 1000,
data = NULL) {

if (is.null(seed) || !is.numeric(seed)) seed <- runif(1, min = -50000, max = 50000)
set.seed(seed)
# set.seed(seed)
k <- nrows
lookup <- FALSE
if(is.null(data)) {
if (is.null(data)) {
if (is.null(t) || is.null(k) || is.null(r) || is.null(l)) {
shiny::validate('Some of the basic design parameters are missing (t, k, r or l).')
}
Expand All @@ -92,18 +94,20 @@ row_column <- function(t = NULL, nrows = NULL, r = NULL, l = 1, plotNumber= 101,
nt <- length(t)
TRT <- t
}
}else if (is.character(t) || is.factor(t)) {
} else if (is.character(t) || is.factor(t)) {
if (length(t) == 1) {
shiny::validate('incomplete_blocks() requires more than one treatment.')
}
nt <- length(t)
}else if ((length(t) > 1)) {
} else if ((length(t) > 1)) {
nt <- length(t)
}
df <- data.frame(list(ENTRY = 1:nt, TREATMENT = paste0("G-", 1:nt)))
data_RowCol <- df
data_up <- data.frame(list(ENTRY = 1:nt, TREATMENT = paste0("G-", 1:nt)))
colnames(data_up) <- c("ENTRY", "TREATMENT")
lookup <- TRUE
}else if (!is.null(data)) {
df <- data.frame(list(ENTRY = 1:nt, LABEL_TREATMENT = paste0("G-", 1:nt)))
dataLookUp <- df
} else if (!is.null(data)) {
if (is.null(t) || is.null(r) || is.null(k) || is.null(l)) {
shiny::validate('Some of the basic design parameters are missing (t, r, k or l).')
}
Expand All @@ -116,43 +120,95 @@ row_column <- function(t = NULL, nrows = NULL, r = NULL, l = 1, plotNumber= 101,
if (t != new_t) base::stop("Number of treatments do not match with data input.")
TRT <- data_up$TREATMENT
nt <- length(TRT)
data_RowCol <- data_up
lookup <- TRUE
dataLookUp <- data.frame(list(ENTRY = 1:nt, LABEL_TREATMENT = TRT))
}
if (k >= nt) shiny::validate('incomplete_blocks() requires k < t.')
if (nt %% k != 0) {
shiny::validate('Number of treatments can not be fully distributed over the specified incomplete block specification.')
}
if(is.null(locationNames) || length(locationNames) != l) locationNames <- 1:l
nunits <- k
matdf <- incomplete_blocks(t = nt, k = nunits, r = r, l = l, plotNumber = plotNumber,
seed = seed, locationNames = locationNames,
data = data_RowCol)
matdf <- matdf$fieldBook
matdf <- as.data.frame(matdf)
colnames(matdf)[5] <- "COLUMN"
matdf$ROW <- matdf$UNIT
OutRowCol <- matdf[,-6]
OutRowCol$LOCATION <- factor(OutRowCol$LOCATION, levels = locationNames)
OutRowCol <- OutRowCol[order(OutRowCol$LOCATION, OutRowCol$REP, OutRowCol$ROW),]
RowCol_plots <- ibd_plot_numbers(nt = nt, plot.number = plotNumber, r = r, l = l)
OutRowCol$PLOT <- as.vector(unlist(RowCol_plots))


## New code
N <- nt * r
out_row_col_loc <- vector(mode = "list", length = l)
blocks_model <- list()
for (i in 1:l) {
reps <- r
ncols <- nt / nunits
mydes <- blocksdesign::blocks(
treatments = nt,
replicates = reps,
blocks = list(reps, ncols),
seed = seed + i
)
mydes <- rerandomize_ibd(ibd_design = mydes)
# Create row and column design
row_col_design <- mydes$Design_new |>
dplyr::mutate(Level_3 = rep(rep(paste0("B", 1:nrows), times = ncols), times = reps)) |>
dplyr::mutate(Level_3 = paste(Level_1, Level_3, sep = ".")) |>
dplyr::mutate(Level_3 = factor(Level_3, levels = unique(Level_3))) |>
dplyr::select(Level_1, Level_2, Level_3, plots, treatments)

improved_design <- improve_efficiency(row_col_design, iterations, seed = seed + i)
field_book_best_design <- improved_design$best_design
row_column_efficiency <- report_efficiency(improved_design$best_design)
blocks_model[[i]] <- row_column_efficiency
row_col_fieldbook <- field_book_best_design |>
dplyr::rename(
REP = Level_1,
COLUMN = Level_2,
ROW = Level_3,
PLOT = plots,
ENTRY = treatments) |>
dplyr::mutate(
REP = as.numeric(factor(REP, levels = unique(REP))),
COLUMN = as.numeric(factor(COLUMN, levels = unique(COLUMN))),
ROW = as.numeric(factor(ROW, levels = unique(ROW)))
) |>
dplyr::select(PLOT, REP, COLUMN, ROW, ENTRY)

locations_df <- data.frame(list(LOCATION = rep(locationNames[i], each = N)))
row_col_fieldbook <- dplyr::bind_cols(locations_df, row_col_fieldbook)
out_row_col_loc[[i]] <- row_col_fieldbook

}

out_row_col <- dplyr::bind_rows(out_row_col_loc)
out_row_col$ENTRY <- as.numeric(out_row_col$ENTRY)

if(lookup) {
OutRowCol <- OutRowCol[,c(2,3,4,8,5,6,7)]
}else OutRowCol <- OutRowCol[,c(2,3,4,7,5,6)]
ID <- 1:nrow(OutRowCol)
OutRowCol <- cbind(ID, OutRowCol)
rownames(OutRowCol) <- 1:nrow(OutRowCol)
loc <- levels(OutRowCol$LOCATION)
out_row_col <- dplyr::inner_join(out_row_col, dataLookUp, by = "ENTRY")
out_row_col <- out_row_col |>
dplyr::rename(TREATMENT = LABEL_TREATMENT) |>
dplyr::select(-ENTRY)
out_row_col <- dplyr::inner_join(out_row_col, data_up, by = "TREATMENT") |>
dplyr::select(LOCATION, PLOT, REP, ROW, COLUMN, ENTRY, TREATMENT)
}

ID <- 1:nrow(out_row_col)
out_row_col_id <- cbind(ID, out_row_col)

row_col_plots <- ibd_plot_numbers(nt = nt, plot.number = plotNumber, r = r, l = l)
out_row_col_id$PLOT <- as.vector(unlist(row_col_plots))

# return(list(fieldBook = out_row_col_id, blocks_model = blocks_model))

loc <- levels(out_row_col_id$LOCATION)
ib <- nt/k
Resolvable_rc_reps <- vector(mode = "list", length = r*l)
w <- 1
for (sites in 1:l) {
for (j in 1:r) {
z <- OutRowCol
z <- out_row_col_id
z <- subset(z, z$LOCATION == loc[sites] & z$REP == j)
if (is.null(data)){
Resolvable_rc_reps[[w]] <- matrix(data = as.vector(z$ENTRY), nrow = nunits,
Resolvable_rc_reps[[w]] <- matrix(data = as.vector(z$ENTRY), nrow = nunits,
ncol = ib, byrow = TRUE)
}else {
Resolvable_rc_reps[[w]] <- matrix(data = as.vector(z$TREATMENT), nrow = nunits,
Resolvable_rc_reps[[w]] <- matrix(data = as.vector(z$TREATMENT), nrow = nunits,
ncol = ib, byrow = TRUE)
}
w <- w + 1
Expand All @@ -164,31 +220,35 @@ row_column <- function(t = NULL, nrows = NULL, r = NULL, l = 1, plotNumber= 101,
y <- seq(r, r * l, r)
z <- 1
for (loc in 1:l) {
NEW_Resolvable[[loc]] <- setNames(Resolvable_rc_reps[x[z]:y[z]],
NEW_Resolvable[[loc]] <- setNames(Resolvable_rc_reps[x[z]:y[z]],
paste0(rep("rep", r), 1:r))
z <- z + 1
}
df <- OutRowCol
trt <- "ENTRY"

df <- out_row_col_id
trt <- "ENTRY"
c1 <- concurrence_matrix(df=df, trt=trt, target='REP')
c2 <- concurrence_matrix (df=df, trt=trt, target='ROW')
c3 <- concurrence_matrix (df=df, trt=trt, target='COLUMN')
summ <- merge(c1, c2, by="Concurrence", all=TRUE)
new_summ <- merge(summ, c3, by='Concurrence', all=TRUE)
infoDesign <- list(
rows = nrows,
columns = ib,
reps = r,
treatments = nt,
locations = l,
location_names = locationNames,
rows = nrows,
columns = ib,
reps = r,
treatments = nt,
locations = l,
location_names = locationNames,
seed = seed,
id_design = 9
)
output <- list(infoDesign = infoDesign, resolvableBlocks = NEW_Resolvable,
concurrence = new_summ,
fieldBook = OutRowCol)
output <- list(
infoDesign = infoDesign,
blocksModel = blocks_model,
resolvableBlocks = NEW_Resolvable,
concurrence = new_summ,
fieldBook = out_row_col_id
)
class(output) <- "FielDHub"
return(invisible(output))
}
18 changes: 17 additions & 1 deletion R/mod_RowCol.R
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ mod_RowCol_ui <- function(id){
ns = ns,
numericInput(ns("t.rcd"),
label = "Input # of Treatments:",
value = 36,
value = 24,
min = 2),
),
fluidRow(
Expand Down Expand Up @@ -110,6 +110,16 @@ mod_RowCol_ui <- function(id){
width = 8,
fluidRow(
tabsetPanel(
tabPanel(
"Summary Design",
br(),
shinycssloaders::withSpinner(
verbatimTextOutput(outputId = ns("summary_row_column"),
placeholder = FALSE),
type = 4
),
style = "padding-right: 40px;"
),
tabPanel("Field Layout",
shinyjs::useShinyjs(),
shinyjs::hidden(downloadButton(ns("downloadCsv.rcd"),
Expand Down Expand Up @@ -333,6 +343,12 @@ mod_RowCol_server <- function(id){
}) |>
bindEvent(input$RUN.rcd)

output$summary_row_column <- renderPrint({
req(RowCol_reactive())
cat("Randomization was successful!", "\n", "\n")
print(RowCol_reactive(), n = 6)
})

upDateSites <- reactive({
req(input$l.rcd)
locs <- as.numeric(input$l.rcd)
Expand Down
Loading

0 comments on commit a7fa9cd

Please sign in to comment.