Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Custom MLIR lowering pipeline #30

Merged
merged 2 commits into from
Jan 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions src/enzyme_ad/jax/BUILD
Original file line number Diff line number Diff line change
Expand Up @@ -112,6 +112,7 @@ pybind_extension(
"@llvm-project//llvm:OrcJIT",
"@llvm-project//llvm:OrcTargetProcess",
"@llvm-project//llvm:Support",
"@llvm-project//mlir:AllPassesAndDialects",
":clang_compile",
":compile_with_xla",
"@com_google_absl//absl/status:statusor",
Expand Down
7 changes: 6 additions & 1 deletion src/enzyme_ad/jax/compile_with_xla.cc
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,8 @@
// Compile an MHLO module given as a string to LLVM IR using XLA.
std::unique_ptr<xla::LocalExecutable>
compile_mhlo_to_llvm_with_xla(llvm::StringRef mhlo_text, std::string &output,
bool xla_runtime) {
bool xla_runtime,
const std::string &pass_pipeline) {
// Parse MLIR.
mlir::MLIRContext context;
context.loadDialect<mlir::arith::ArithDialect>();
Expand Down Expand Up @@ -103,6 +104,10 @@ compile_mhlo_to_llvm_with_xla(llvm::StringRef mhlo_text, std::string &output,
build_options.mutable_debug_options()->set_xla_cpu_use_xla_runtime(
xla_runtime);

build_options.mutable_debug_options()
->mutable_xla_backend_extra_options()
->emplace("xla_cpu_experimental_override_pipeline", pass_pipeline);

if (build_options.device_ordinal() == -1) {
build_options.set_device_ordinal(local_client->default_device_ordinal());
}
Expand Down
3 changes: 2 additions & 1 deletion src/enzyme_ad/jax/compile_with_xla.h
Original file line number Diff line number Diff line change
Expand Up @@ -5,4 +5,5 @@
// Compile an MHLO module given as a string to LLVM IR using XLA.
std::unique_ptr<xla::LocalExecutable>
compile_mhlo_to_llvm_with_xla(llvm::StringRef mhlo_text, std::string &output,
bool xla_runtime);
bool xla_runtime,
const std::string &pass_pipeline);
88 changes: 64 additions & 24 deletions src/enzyme_ad/jax/enzyme_call.cc
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,19 @@
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"

#include "mlir/InitAllPasses.h"
#include "xla/mlir/backends/cpu/transforms/passes.h"
#include "xla/mlir/math/transforms/passes.h"
#include "xla/mlir/memref/transforms/passes.h"
#include "xla/mlir/runtime/transforms/passes.h"
#include "xla/mlir_hlo/deallocation/transforms/passes.h"
#include "xla/mlir_hlo/lhlo/IR/lhlo_ops.h"
#include "xla/mlir_hlo/lhlo/transforms/passes.h"
#include "xla/mlir_hlo/lhlo_gpu/IR/lhlo_gpu_ops.h"
#include "xla/mlir_hlo/mhlo/transforms/passes.h"

#include "xla/mlir_hlo/transforms/passes.h"

#include "compile_with_xla.h"
#include "xla/hlo/ir/hlo_casting_utils.h"
#include "xla/hlo/ir/hlo_instructions.h"
Expand Down Expand Up @@ -81,7 +94,8 @@ class CpuKernel {
llvm::ArrayRef<std::string> out_names,
llvm::ArrayRef<llvm::SmallVector<int64_t>> in_shapes,
llvm::ArrayRef<std::string> in_names, PyObject *pyargv,
ABI mode, Language lang, bool xla_runtime) {
ABI mode, Language lang, bool xla_runtime,
const std::string &pass_pipeline) {
auto llvm_ctx = std::make_unique<llvm::LLVMContext>();

std::string input;
Expand All @@ -102,8 +116,8 @@ class CpuKernel {
break;

case Language::MHLO: {
local_executable =
compile_mhlo_to_llvm_with_xla(source, stringbuf, xla_runtime);
local_executable = compile_mhlo_to_llvm_with_xla(
source, stringbuf, xla_runtime, pass_pipeline);
auto *cpu_executable = static_cast<xla::cpu::CpuExecutable *>(
local_executable->executable());
auto &assignment = cpu_executable->buffer_assignment();
Expand Down Expand Up @@ -830,11 +844,12 @@ class CpuKernel {
llvm::ArrayRef<std::string> out_names,
llvm::ArrayRef<llvm::SmallVector<int64_t>> in_shapes,
llvm::ArrayRef<std::string> in_names, PyObject *pyargv,
Language lang, bool xla_runtime) {
Language lang, bool xla_runtime,
const std::string &pass_pipeline) {
auto mode = ABI::Tape;
auto [mod, llvm_ctx, num_out, tmpBuf] =
createLLVMMod(fn, source, out_shapes, out_names, in_shapes, in_names,
pyargv, mode, lang, xla_runtime);
pyargv, mode, lang, xla_runtime, pass_pipeline);
auto lfn = mod->getFunction("entry");
auto RI =
llvm::cast<llvm::ReturnInst>(lfn->getEntryBlock().getTerminator());
Expand All @@ -846,12 +861,12 @@ class CpuKernel {
}

static size_t tempSize(llvm::StringRef source, Language lang,
bool xla_runtime) {
bool xla_runtime, const std::string &pass_pipeline) {
switch (lang) {
case Language::MHLO: {
std::string llvm_ir;
auto local_executable =
compile_mhlo_to_llvm_with_xla(source, llvm_ir, xla_runtime);
auto local_executable = compile_mhlo_to_llvm_with_xla(
source, llvm_ir, xla_runtime, pass_pipeline);
auto *cpu_executable = static_cast<xla::cpu::CpuExecutable *>(
local_executable->executable());
auto &assignment = cpu_executable->buffer_assignment();
Expand All @@ -868,13 +883,13 @@ class CpuKernel {
llvm::ArrayRef<std::string> out_names,
llvm::ArrayRef<llvm::SmallVector<int64_t>> in_shapes,
llvm::ArrayRef<std::string> in_names, PyObject *pyargv, ABI mode,
Language lang, bool xla_runtime) {
Language lang, bool xla_runtime, const std::string &pass_pipeline) {
llvm::sys::SmartScopedWriter<true> lock(kernel_mutex);
size_t identifier = last_identifier++;

auto [mod, llvm_ctx, num_out, tmpBuf] =
createLLVMMod(fn, source, out_shapes, out_names, in_shapes, in_names,
pyargv, mode, lang, xla_runtime);
pyargv, mode, lang, xla_runtime, pass_pipeline);

if (!JIT) {
DL = std::make_unique<llvm::DataLayout>(mod.get());
Expand Down Expand Up @@ -986,6 +1001,27 @@ PYBIND11_MODULE(enzyme_call, m) {
llvm::InitializeAllAsmParsers();
EnzymeAlwaysInlineDiff.setValue(true);

mlir::registerAllPasses();

mlir::mhlo::registerAllMhloPasses();
xla::cpu::registerCpuTransformsPasses();
mlir::hlo::registerLMHLOTransformsPasses();
xla::runtime::registerRuntimeTransformsPasses();
xla::registerMathTransformsPasses();
xla::registerMemrefTransformsPasses();

mlir::registerShapePasses();
mlir::registerConvertShapeToStandardPass();
mlir::registerConvertShapeConstraintsPass();
mlir::memref::registerResolveShapedTypeResultDims();
mlir::registerLinalgPasses();
mlir::registerReconcileUnrealizedCastsPass();
mlir::registerConversionPasses();
mlir::bufferization::registerBufferizationPasses();
mlir::registerAsyncPasses();
mlir::arith::registerArithPasses();
mlir::memref::registerMemRefPasses();

pybind11::enum_<Language>(m, "Language")
.value("CPP", Language::CPP)
.value("LLVM", Language::LLVM)
Expand All @@ -1002,8 +1038,8 @@ PYBIND11_MODULE(enzyme_call, m) {
[](const std::string &source, const std::string &fn,
const pybind11::list &py_out_shapes,
const pybind11::list &py_in_shapes, pybind11::object pyargv,
ABI mode, Language lang,
bool xla_runtime) -> std::tuple<size_t, size_t> {
ABI mode, Language lang, bool xla_runtime,
const std::string &pass_pipeline) -> std::tuple<size_t, size_t> {
llvm::SmallVector<llvm::SmallVector<int64_t>> out_shapes;
out_shapes.reserve(pybind11::len(py_out_shapes));
llvm::SmallVector<llvm::SmallVector<int64_t>> in_shapes;
Expand Down Expand Up @@ -1039,20 +1075,22 @@ PYBIND11_MODULE(enzyme_call, m) {
}
return CpuKernel::create(fn, source, out_shapes, out_types, in_shapes,
in_types, pyargv.ptr(), mode, (Language)lang,
xla_runtime);
xla_runtime, pass_pipeline);
});

m.def(
"tmp_size",
[](const std::string &source, Language lang, bool xla_runtime) -> size_t {
return CpuKernel::tempSize(source, (Language)lang, xla_runtime);
});
m.def("tmp_size",
[](const std::string &source, Language lang, bool xla_runtime,
const std::string &pass_pipeline) -> size_t {
return CpuKernel::tempSize(source, (Language)lang, xla_runtime,
pass_pipeline);
});

m.def("tape_and_tmp_size",
[](const std::string &source, const std::string &fn,
const pybind11::list &py_out_shapes,
const pybind11::list &py_in_shapes, pybind11::object pyargv,
Language lang, bool xla_runtime) -> std::pair<size_t, size_t> {
Language lang, bool xla_runtime,
const std::string &pass_pipeline) -> std::pair<size_t, size_t> {
llvm::SmallVector<llvm::SmallVector<int64_t>> out_shapes;
out_shapes.reserve(pybind11::len(py_out_shapes));
llvm::SmallVector<llvm::SmallVector<int64_t>> in_shapes;
Expand Down Expand Up @@ -1086,9 +1124,9 @@ PYBIND11_MODULE(enzyme_call, m) {
target.push_back(nested_element.cast<int64_t>());
}
}
return CpuKernel::tapeAndTempSize(fn, source, out_shapes, out_types,
in_shapes, in_types, pyargv.ptr(),
(Language)lang, xla_runtime);
return CpuKernel::tapeAndTempSize(
fn, source, out_shapes, out_types, in_shapes, in_types,
pyargv.ptr(), (Language)lang, xla_runtime, pass_pipeline);
});

m.def("get_cpu_callback", []() {
Expand All @@ -1097,9 +1135,11 @@ PYBIND11_MODULE(enzyme_call, m) {
});

m.def("compile_mhlo_to_llvm_with_xla",
[](const std::string &mhlo_text, bool xla_runtime) {
[](const std::string &mhlo_text, bool xla_runtime,
const std::string &pass_pipeline) {
std::string llvm_ir;
compile_mhlo_to_llvm_with_xla(mhlo_text, llvm_ir, xla_runtime);
compile_mhlo_to_llvm_with_xla(mhlo_text, llvm_ir, xla_runtime,
pass_pipeline);
return llvm_ir;
});
}
Loading
Loading