Stephany Valderrama and Wenya Li
Thanks to: Aaron Moran , Arnas Steponavicius and Thomas Kenny. Modified code from those repositories
The requirements needed for this project are as follows :
-
Python 3.8+
-
Linux, Windows, MacOS
-
Django
-
Latest version of pip
For run theses facial recognition demos, you require to install the following python module.
You can run pip install requirements.txt
pip3 install django
pip3 install numpy
pip3 install opencv-python
pip3 install Pillow
pip3 install face_recognition
Note: Make sure you are using the latest version of pip.
-
For Mac or Linux --> follow the instructions of face_recognition docs
-
For Windows --> follow the instructions of face_recognition docs
Note: Currently the packages for face_recognition
are not fully supported on Windows.
Carpeta | Folder / Fichero | Descripción |
---|---|---|
facial_recognition_webcam |
facial.py |
Face recognition system on live video from a local webcam. |
facial_recognition_webcam |
/info_facial |
Imágenes de referencia para reconocimiento facial múltiple. |
login_recognition_app |
/accounts |
Codigo html para el registro de usuarios. |
login_recognition_app |
/facialrecognition |
Configuracion de metodos, funciones y conexion entre modulos par despliegue en Django. |
login_recognition_app |
~/ /media |
Aquí se almacenan las imágenes de los usuarios registrados. |
login_recognition_app |
db.sqlite3 |
base de datos SQlite donde se guardan las migraciones de los nuevos usuarios registrados. |
login_recognition_app |
manage.py |
Archivo principal para el funcionamiento del sistema de login. |
.gitignore |
Para ignorar los archivos sensibles como imégenes. | |
requirements.txt |
Librerías y paquetes utilizados par la creación de este proyecto. | |
README.md |
Descripción de este repositorio |
We proposed two demos using face recognition library:
-
Simple sample of Face recognition system on live video from a local webcam.
-
Facial login web application with Django framework and sqlite databases.
This is a face recognition system on live video from a local webcam.
-
Navigate to directory
$ cd \facial_recognition_webcam\
-
Put into
\info_facial
folder the images of the persons that you want to recognize in this demo.
The image format could be .jpg
, .jpeg
, .png
.
-
Run the application:
$ python facial.py
-
Look at the camera for take the picture to recognize faces and compare with the base images of the system.
-
Press
CTRL-C
to stop the process.
-
Navigate to directory
$ cd \login_recognition_app\facialrecognition
-
Make migrations of the required models and tables needed to run the program.
$ python manage.py makemigrations
-
Perform Migrations.
$ python manage.py migrate
-
Create a super user to access administrator controls and dashboard.
$ python manage.py createsuperuser
-
Run the program.
$ python manage.py runserver or $ python manage.py runserver --nothreading --noreload
-
Make sure to navigate in your browser to
http://localhost:8000/
to view the application.
-
To access the admin type the following into the browser while the server is running
http://localhost:8000/admin
. This page will display the database and allow the admin to edit user's accounts. -
To access the register type, please write an
username
and upload a image of this user to register into the system.
The images taken in registration process are saved in \login_recognition_app\facialrecognition\media\images
--> These are our base images for the recognition process.
- To login into the system, please click on
Login
, write the registeredusername
and then look the camera for the login photo verification process.
Then, press Q
for take the picture for login.
If the detected face make match with a registered username, then you'll have a Welcome
like this:
- Press
CTRL-C
to stop the process.