-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathREADME.txt
68 lines (55 loc) · 2.42 KB
/
README.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
The data used in the analyses and figures can be found on the dryad data repository searching for:
Imperfect pathogen detection from non-invasive skin swabs biases disease inference
DiRenzo, Graziella; Grant, Evan; Longo, Ana; Che-Castaldo, Christian; Zamudio, Kelly; Lips, Karen
* Please feel free to contact me at [email protected] if you are having trouble with the code, need help with explanations of what the files are, or the files do not work on your machine.
AppendixS2 > Figure Code
Simulation_figures.R
# Used to create the figures for the simulations in the main text and Appendix S1
AppendixS2 > Generate document
AppendixS2.Rmd
# Use to generate Appendix S2 (.Rmd file)
Figures
Bayesianpvalue.R
# Creates a figure to visualize the Bayesian p-value
# Calculates the Bayesian p-value
Fig1_detection_Figure.R
# Creates Figure 1 in the main text
Fig2_Pstar_combo.R
# Creates Figure 2 in the main text
Model> Model code >
Double_Swab_Imperfect_sampling.R
# Formats the data
# Write the imperfect sampling detection model
# Bundles the data
# Runs the model
Double_Swab_IGNORING_imperfect_sampling.R
# Formats the data
# Write the imperfect sampling detection model
# Bundles the data
# Runs the model
Replicate_Miller_Figure.R
# Recreates Fig. 2 from Miller et al. 2012 MEES
Model> Model code > Model output
adjusted.rda
# JAGS output for model with imperfect sampling detection
NOTadjusted.rda
# JAGS output for model IGNORING imperfect sampling detection
Miller.rda
# JAGS output for model replicating model output for Miller et al. 2012
Model> Simulate Miller et al. 2012 data
Simulate_Miller_2012.R
#This file simulates the data for Miller et al. 2012, runs the model, and saves the model output
Parameter comparisons
Comparisons.R
# Compares the parameter estimates between the imperfect pathogen detection model and the unadjusted model
Simulations > Code HPC
Create parameter combinations.R
# Used to create sampling and parameter value scenarios for simualtions
Simulations > Code HPC > High lambda
# Code to submit jobs, scirpt, model, and parameter values to HPC when lambda is high
Simulations > Code HPC > Low lambda
# Code to submit jobs, scirpt, model, and parameter values to HPC when low is high
Simulations > Data file generated
# All data files generated by the HPC
Simulations > Figures
# Code used to make the simulation figures in the main text and the Sppendix S!