Skip to content

Commit

Permalink
simplify hash calculation and improve saving logic
Browse files Browse the repository at this point in the history
  • Loading branch information
blaisewf committed Dec 27, 2024
1 parent 1c1aeed commit 3f2cd59
Show file tree
Hide file tree
Showing 3 changed files with 175 additions and 232 deletions.
119 changes: 55 additions & 64 deletions rvc/train/process/extract_model.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import os, sys
import os
import sys
import torch
import hashlib
import datetime
Expand All @@ -10,15 +11,14 @@


def replace_keys_in_dict(d, old_key_part, new_key_part):
if isinstance(d, OrderedDict):
updated_dict = OrderedDict()
else:
updated_dict = {}
updated_dict = OrderedDict() if isinstance(d, OrderedDict) else {}
for key, value in d.items():
new_key = key.replace(old_key_part, new_key_part)
if isinstance(value, dict):
value = replace_keys_in_dict(value, old_key_part, new_key_part)
updated_dict[new_key] = value
updated_dict[new_key] = (
replace_keys_in_dict(value, old_key_part, new_key_part)
if isinstance(value, dict)
else value
)
return updated_dict


Expand All @@ -41,86 +41,77 @@ def extract_model(
model_dir_path = os.path.dirname(model_dir)
os.makedirs(model_dir_path, exist_ok=True)

if "best_epoch" in model_dir:
pth_file = f"{name}_{epoch}e_{step}s_best_epoch.pth"
else:
pth_file = f"{name}_{epoch}e_{step}s.pth"

suffix = "_best_epoch" if "best_epoch" in model_dir else ""
pth_file = f"{name}_{epoch}e_{step}s{suffix}.pth"
pth_file_old_version_path = os.path.join(
model_dir_path, f"{pth_file}_old_version.pth"
)

model_dir_path = os.path.dirname(model_dir)
dataset_length, embedder_model, speakers_id = None, None, 1
if os.path.exists(os.path.join(model_dir_path, "model_info.json")):
with open(os.path.join(model_dir_path, "model_info.json"), "r") as f:
data = json.load(f)
dataset_lenght = data.get("total_dataset_duration", None)
embedder_model = data.get("embedder_model", None)
dataset_length = data.get("total_dataset_duration")
embedder_model = data.get("embedder_model")
speakers_id = data.get("speakers_id", 1)
else:
dataset_lenght = None

with open(os.path.join(now_dir, "assets", "config.json"), "r") as f:
data = json.load(f)
model_author = data.get("model_author", None)
model_author = data.get("model_author")

opt = OrderedDict(
weight={
key: value.half() for key, value in ckpt.items() if "enc_q" not in key
}
},
config=[
hps.data.filter_length // 2 + 1,
32,
hps.model.inter_channels,
hps.model.hidden_channels,
hps.model.filter_channels,
hps.model.n_heads,
hps.model.n_layers,
hps.model.kernel_size,
hps.model.p_dropout,
hps.model.resblock,
hps.model.resblock_kernel_sizes,
hps.model.resblock_dilation_sizes,
hps.model.upsample_rates,
hps.model.upsample_initial_channel,
hps.model.upsample_kernel_sizes,
hps.model.spk_embed_dim,
hps.model.gin_channels,
hps.data.sample_rate,
],
epoch=epoch,
step=step,
sr=sr,
f0=pitch_guidance,
version=version,
creation_date=datetime.datetime.now().isoformat(),
overtrain_info=overtrain_info,
dataset_length=dataset_length,
model_name=name,
author=model_author,
embedder_model=embedder_model,
speakers_id=speakers_id,
vocoder=vocoder,
)
opt["config"] = [
hps.data.filter_length // 2 + 1,
32,
hps.model.inter_channels,
hps.model.hidden_channels,
hps.model.filter_channels,
hps.model.n_heads,
hps.model.n_layers,
hps.model.kernel_size,
hps.model.p_dropout,
hps.model.resblock,
hps.model.resblock_kernel_sizes,
hps.model.resblock_dilation_sizes,
hps.model.upsample_rates,
hps.model.upsample_initial_channel,
hps.model.upsample_kernel_sizes,
hps.model.spk_embed_dim,
hps.model.gin_channels,
hps.data.sample_rate,
]

opt["epoch"] = epoch
opt["step"] = step
opt["sr"] = sr
opt["f0"] = pitch_guidance
opt["version"] = version
opt["creation_date"] = datetime.datetime.now().isoformat()

hash_input = f"{str(ckpt)} {epoch} {step} {datetime.datetime.now().isoformat()}"
model_hash = hashlib.sha256(hash_input.encode()).hexdigest()
opt["model_hash"] = model_hash
opt["overtrain_info"] = overtrain_info
opt["dataset_lenght"] = dataset_lenght
opt["model_name"] = name
opt["author"] = model_author
opt["embedder_model"] = embedder_model
opt["speakers_id"] = speakers_id
opt["vocoder"] = vocoder
hash_input = f"{name}-{epoch}-{step}-{sr}-{version}-{opt['config']}"
opt["model_hash"] = hashlib.sha256(hash_input.encode()).hexdigest()

torch.save(opt, os.path.join(model_dir_path, pth_file))

model = torch.load(model_dir, map_location=torch.device("cpu"))
torch.save(
updated_model = replace_keys_in_dict(
replace_keys_in_dict(
replace_keys_in_dict(
model, ".parametrizations.weight.original1", ".weight_v"
),
".parametrizations.weight.original0",
".weight_g",
model, ".parametrizations.weight.original1", ".weight_v"
),
pth_file_old_version_path,
".parametrizations.weight.original0",
".weight_g",
)
torch.save(updated_model, pth_file_old_version_path)
os.remove(model_dir)
os.rename(pth_file_old_version_path, model_dir)

Expand Down
Loading

0 comments on commit 3f2cd59

Please sign in to comment.