-
-
Notifications
You must be signed in to change notification settings - Fork 326
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
148 changed files
with
28,764 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,42 @@ | ||
.DS_Store | ||
__pycache__ | ||
/TEMP | ||
/DATASETS | ||
/RUNTIME | ||
*.pyd | ||
hubert_base.pt | ||
.venv | ||
alexforkINSTALL.bat | ||
Changelog_CN.md | ||
Changelog_EN.md | ||
Changelog_KO.md | ||
difdep.py | ||
EasierGUI.py | ||
envfilescheck.bat | ||
export_onnx.py | ||
export_onnx_old.py | ||
ffmpeg.exe | ||
ffprobe.exe | ||
Fixes/Launch_Tensorboard.bat | ||
Fixes/LOCAL_CREPE_FIX.bat | ||
Fixes/local_fixes.py | ||
Fixes/tensor-launch.py | ||
gui.py | ||
infer-web — backup.py | ||
infer-webbackup.py | ||
install_easy_dependencies.py | ||
install_easyGUI.bat | ||
installstft.bat | ||
Launch_Tensorboard.bat | ||
listdepend.bat | ||
LOCAL_CREPE_FIX.bat | ||
local_fixes.py | ||
oldinfer.py | ||
onnx_inference_demo.py | ||
Praat.exe | ||
requirementsNEW.txt | ||
rmvpe.pt | ||
run_easiergui.bat | ||
tensor-launch.py | ||
values1.json | ||
使用需遵守的协议-LICENSE.txt |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
# syntax=docker/dockerfile:1 | ||
|
||
FROM python:3.10-bullseye | ||
|
||
EXPOSE 7865 | ||
|
||
WORKDIR /app | ||
|
||
COPY . . | ||
|
||
RUN pip3 install -r requirements.txt | ||
|
||
CMD ["python3", "infer-web.py"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
MIT License | ||
|
||
Copyright (c) 2023 liujing04 | ||
Copyright (c) 2023 源文雨 | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
from importlib.util import find_spec, LazyLoader, module_from_spec | ||
from sys import modules | ||
|
||
def lazyload(name): | ||
if name in modules: | ||
return modules[name] | ||
else: | ||
spec = find_spec(name) | ||
loader = LazyLoader(spec.loader) | ||
module = module_from_spec(spec) | ||
modules[name] = module | ||
loader.exec_module(module) | ||
return module |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,272 @@ | ||
import soundfile as sf | ||
import torch, pdb, os, warnings, librosa | ||
import numpy as np | ||
import onnxruntime as ort | ||
from tqdm import tqdm | ||
import torch | ||
|
||
dim_c = 4 | ||
|
||
|
||
class Conv_TDF_net_trim: | ||
def __init__( | ||
self, device, model_name, target_name, L, dim_f, dim_t, n_fft, hop=1024 | ||
): | ||
super(Conv_TDF_net_trim, self).__init__() | ||
|
||
self.dim_f = dim_f | ||
self.dim_t = 2**dim_t | ||
self.n_fft = n_fft | ||
self.hop = hop | ||
self.n_bins = self.n_fft // 2 + 1 | ||
self.chunk_size = hop * (self.dim_t - 1) | ||
self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to( | ||
device | ||
) | ||
self.target_name = target_name | ||
self.blender = "blender" in model_name | ||
|
||
out_c = dim_c * 4 if target_name == "*" else dim_c | ||
self.freq_pad = torch.zeros( | ||
[1, out_c, self.n_bins - self.dim_f, self.dim_t] | ||
).to(device) | ||
|
||
self.n = L // 2 | ||
|
||
def stft(self, x): | ||
x = x.reshape([-1, self.chunk_size]) | ||
x = torch.stft( | ||
x, | ||
n_fft=self.n_fft, | ||
hop_length=self.hop, | ||
window=self.window, | ||
center=True, | ||
return_complex=True, | ||
) | ||
x = torch.view_as_real(x) | ||
x = x.permute([0, 3, 1, 2]) | ||
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape( | ||
[-1, dim_c, self.n_bins, self.dim_t] | ||
) | ||
return x[:, :, : self.dim_f] | ||
|
||
def istft(self, x, freq_pad=None): | ||
freq_pad = ( | ||
self.freq_pad.repeat([x.shape[0], 1, 1, 1]) | ||
if freq_pad is None | ||
else freq_pad | ||
) | ||
x = torch.cat([x, freq_pad], -2) | ||
c = 4 * 2 if self.target_name == "*" else 2 | ||
x = x.reshape([-1, c, 2, self.n_bins, self.dim_t]).reshape( | ||
[-1, 2, self.n_bins, self.dim_t] | ||
) | ||
x = x.permute([0, 2, 3, 1]) | ||
x = x.contiguous() | ||
x = torch.view_as_complex(x) | ||
x = torch.istft( | ||
x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True | ||
) | ||
return x.reshape([-1, c, self.chunk_size]) | ||
|
||
|
||
def get_models(device, dim_f, dim_t, n_fft): | ||
return Conv_TDF_net_trim( | ||
device=device, | ||
model_name="Conv-TDF", | ||
target_name="vocals", | ||
L=11, | ||
dim_f=dim_f, | ||
dim_t=dim_t, | ||
n_fft=n_fft, | ||
) | ||
|
||
|
||
warnings.filterwarnings("ignore") | ||
cpu = torch.device("cpu") | ||
if torch.cuda.is_available(): | ||
device = torch.device("cuda:0") | ||
elif torch.backends.mps.is_available(): | ||
device = torch.device("mps") | ||
else: | ||
device = torch.device("cpu") | ||
|
||
|
||
class Predictor: | ||
def __init__(self, args): | ||
self.args = args | ||
self.model_ = get_models( | ||
device=cpu, dim_f=args.dim_f, dim_t=args.dim_t, n_fft=args.n_fft | ||
) | ||
self.model = ort.InferenceSession( | ||
os.path.join(args.onnx, self.model_.target_name + ".onnx"), | ||
providers=["CUDAExecutionProvider", "CPUExecutionProvider"], | ||
) | ||
print("onnx load done") | ||
|
||
def demix(self, mix): | ||
samples = mix.shape[-1] | ||
margin = self.args.margin | ||
chunk_size = self.args.chunks * 44100 | ||
assert not margin == 0, "margin cannot be zero!" | ||
if margin > chunk_size: | ||
margin = chunk_size | ||
|
||
segmented_mix = {} | ||
|
||
if self.args.chunks == 0 or samples < chunk_size: | ||
chunk_size = samples | ||
|
||
counter = -1 | ||
for skip in range(0, samples, chunk_size): | ||
counter += 1 | ||
|
||
s_margin = 0 if counter == 0 else margin | ||
end = min(skip + chunk_size + margin, samples) | ||
|
||
start = skip - s_margin | ||
|
||
segmented_mix[skip] = mix[:, start:end].copy() | ||
if end == samples: | ||
break | ||
|
||
sources = self.demix_base(segmented_mix, margin_size=margin) | ||
""" | ||
mix:(2,big_sample) | ||
segmented_mix:offset->(2,small_sample) | ||
sources:(1,2,big_sample) | ||
""" | ||
return sources | ||
|
||
def demix_base(self, mixes, margin_size): | ||
chunked_sources = [] | ||
progress_bar = tqdm(total=len(mixes)) | ||
progress_bar.set_description("Processing") | ||
for mix in mixes: | ||
cmix = mixes[mix] | ||
sources = [] | ||
n_sample = cmix.shape[1] | ||
model = self.model_ | ||
trim = model.n_fft // 2 | ||
gen_size = model.chunk_size - 2 * trim | ||
pad = gen_size - n_sample % gen_size | ||
mix_p = np.concatenate( | ||
(np.zeros((2, trim)), cmix, np.zeros((2, pad)), np.zeros((2, trim))), 1 | ||
) | ||
mix_waves = [] | ||
i = 0 | ||
while i < n_sample + pad: | ||
waves = np.array(mix_p[:, i : i + model.chunk_size]) | ||
mix_waves.append(waves) | ||
i += gen_size | ||
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(cpu) | ||
with torch.no_grad(): | ||
_ort = self.model | ||
spek = model.stft(mix_waves) | ||
if self.args.denoise: | ||
spec_pred = ( | ||
-_ort.run(None, {"input": -spek.cpu().numpy()})[0] * 0.5 | ||
+ _ort.run(None, {"input": spek.cpu().numpy()})[0] * 0.5 | ||
) | ||
tar_waves = model.istft(torch.tensor(spec_pred)) | ||
else: | ||
tar_waves = model.istft( | ||
torch.tensor(_ort.run(None, {"input": spek.cpu().numpy()})[0]) | ||
) | ||
tar_signal = ( | ||
tar_waves[:, :, trim:-trim] | ||
.transpose(0, 1) | ||
.reshape(2, -1) | ||
.numpy()[:, :-pad] | ||
) | ||
|
||
start = 0 if mix == 0 else margin_size | ||
end = None if mix == list(mixes.keys())[::-1][0] else -margin_size | ||
if margin_size == 0: | ||
end = None | ||
sources.append(tar_signal[:, start:end]) | ||
|
||
progress_bar.update(1) | ||
|
||
chunked_sources.append(sources) | ||
_sources = np.concatenate(chunked_sources, axis=-1) | ||
# del self.model | ||
progress_bar.close() | ||
return _sources | ||
|
||
def prediction(self, m, vocal_root, others_root, format): | ||
os.makedirs(vocal_root, exist_ok=True) | ||
os.makedirs(others_root, exist_ok=True) | ||
basename = os.path.basename(m) | ||
mix, rate = librosa.load(m, mono=False, sr=44100) | ||
if mix.ndim == 1: | ||
mix = np.asfortranarray([mix, mix]) | ||
mix = mix.T | ||
sources = self.demix(mix.T) | ||
opt = sources[0].T | ||
if format in ["wav", "flac"]: | ||
sf.write( | ||
"%s/%s_main_vocal.%s" % (vocal_root, basename, format), mix - opt, rate | ||
) | ||
sf.write("%s/%s_others.%s" % (others_root, basename, format), opt, rate) | ||
else: | ||
path_vocal = "%s/%s_main_vocal.wav" % (vocal_root, basename) | ||
path_other = "%s/%s_others.wav" % (others_root, basename) | ||
sf.write(path_vocal, mix - opt, rate) | ||
sf.write(path_other, opt, rate) | ||
if os.path.exists(path_vocal): | ||
os.system( | ||
"ffmpeg -i %s -vn %s -q:a 2 -y" | ||
% (path_vocal, path_vocal[:-4] + ".%s" % format) | ||
) | ||
if os.path.exists(path_other): | ||
os.system( | ||
"ffmpeg -i %s -vn %s -q:a 2 -y" | ||
% (path_other, path_other[:-4] + ".%s" % format) | ||
) | ||
|
||
|
||
class MDXNetDereverb: | ||
def __init__(self, chunks): | ||
self.onnx = "uvr5_weights/onnx_dereverb_By_FoxJoy" | ||
self.shifts = 10 #'Predict with randomised equivariant stabilisation' | ||
self.mixing = "min_mag" # ['default','min_mag','max_mag'] | ||
self.chunks = chunks | ||
self.margin = 44100 | ||
self.dim_t = 9 | ||
self.dim_f = 3072 | ||
self.n_fft = 6144 | ||
self.denoise = True | ||
self.pred = Predictor(self) | ||
|
||
def _path_audio_(self, input, vocal_root, others_root, format): | ||
self.pred.prediction(input, vocal_root, others_root, format) | ||
|
||
|
||
if __name__ == "__main__": | ||
dereverb = MDXNetDereverb(15) | ||
from time import time as ttime | ||
|
||
t0 = ttime() | ||
dereverb._path_audio_( | ||
"雪雪伴奏对消HP5.wav", | ||
"vocal", | ||
"others", | ||
) | ||
t1 = ttime() | ||
print(t1 - t0) | ||
|
||
|
||
""" | ||
runtime\python.exe MDXNet.py | ||
6G: | ||
15/9:0.8G->6.8G | ||
14:0.8G->6.5G | ||
25:炸 | ||
half15:0.7G->6.6G,22.69s | ||
fp32-15:0.7G->6.6G,20.85s | ||
""" |
Oops, something went wrong.