Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

chore(format): run black on main #192

Merged
merged 1 commit into from
Jan 20, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
163 changes: 82 additions & 81 deletions assets/Applio.ipynb
Original file line number Diff line number Diff line change
@@ -1,84 +1,85 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "vtON700qokuQ"
},
"outputs": [],
"source": [
"# @title **Install Applio**\n",
"\n",
"import codecs\n",
"import time\n",
"\n",
"orig_name_of_program = codecs.decode(\"Nccyvb\", \"rot_13\")\n",
"new_name_of_program = codecs.decode(\"cebtenz\", \"rot_13\")\n",
"uioawhd = codecs.decode(\"uggcf://tvguho.pbz/VNUvfcnab/Nccyvb.tvg\", \"rot_13\")\n",
"uyadwa = codecs.decode(\"ncc.cl\", \"rot_13\")\n",
"\n",
"from IPython.display import clear_output, Javascript\n",
"\n",
"!git clone --depth 1 $uioawhd\n",
"!mv $orig_name_of_program $new_name_of_program\n",
"%cd $new_name_of_program/\n",
"\n",
"clear_output()\n",
"file_path = \"requirements.txt\"\n",
"!pip install -r \"requirements.txt\" --quiet\n",
"\n",
"clear_output()\n",
"print(\"Finished installing requirements!\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "-7cQtXouqpQi"
},
"outputs": [],
"source": [
"# @title **Start Applio**\n",
"import codecs\n",
"uyadwa = codecs.decode(\"ncc.cl\", \"rot_13\")\n",
"\n",
"%load_ext tensorboard\n",
"%reload_ext tensorboard\n",
"%tensorboard --logdir logs --bind_all\n",
"\n",
"!python $uyadwa --share"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ymhGfgFSR17k"
},
"source": [
"## **Credits**\n",
"- Special thanks to [Hina](https://github.com/hinabl) 💗\n",
"- [Blaise](https://github.com/blaise-tk) and [Applio Team](https://github.com/IAHispano)"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "T4",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "vtON700qokuQ"
},
"outputs": [],
"source": [
"# @title **Install Applio**\n",
"\n",
"import codecs\n",
"import time\n",
"\n",
"orig_name_of_program = codecs.decode(\"Nccyvb\", \"rot_13\")\n",
"new_name_of_program = codecs.decode(\"cebtenz\", \"rot_13\")\n",
"uioawhd = codecs.decode(\"uggcf://tvguho.pbz/VNUvfcnab/Nccyvb.tvg\", \"rot_13\")\n",
"uyadwa = codecs.decode(\"ncc.cl\", \"rot_13\")\n",
"\n",
"from IPython.display import clear_output, Javascript\n",
"\n",
"!git clone --depth 1 $uioawhd\n",
"!mv $orig_name_of_program $new_name_of_program\n",
"%cd $new_name_of_program/\n",
"\n",
"clear_output()\n",
"file_path = \"requirements.txt\"\n",
"!pip install -r \"requirements.txt\" --quiet\n",
"\n",
"clear_output()\n",
"print(\"Finished installing requirements!\")"
]
},
"nbformat": 4,
"nbformat_minor": 0
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "-7cQtXouqpQi"
},
"outputs": [],
"source": [
"# @title **Start Applio**\n",
"import codecs\n",
"\n",
"uyadwa = codecs.decode(\"ncc.cl\", \"rot_13\")\n",
"\n",
"%load_ext tensorboard\n",
"%reload_ext tensorboard\n",
"%tensorboard --logdir logs --bind_all\n",
"\n",
"!python $uyadwa --share"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ymhGfgFSR17k"
},
"source": [
"## **Credits**\n",
"- Special thanks to [Hina](https://github.com/hinabl) 💗\n",
"- [Blaise](https://github.com/blaise-tk) and [Applio Team](https://github.com/IAHispano)"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "T4",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
2 changes: 2 additions & 0 deletions assets/discord_presence.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
import datetime as dt
import time


def rich_presence():
client_id = "1144714449563955302"
RPC = Presence(client_id)
Expand All @@ -23,6 +24,7 @@ def rich_presence():
print(f"An error occurred: {e}")
return None


if __name__ == "__main__":
rpc = rich_presence()

Expand Down
18 changes: 11 additions & 7 deletions rvc/infer/infer.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,9 @@ def vc_single(
result, new_dir_path = process_audio(input_audio_path)
if result == "Error":
return "Error with Split Audio", None
dir_path = new_dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
dir_path = (
new_dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
)
if dir_path != "":
paths = [
os.path.join(root, name)
Expand All @@ -108,14 +110,17 @@ def vc_single(
path,
False,
)
#new_dir_path
# new_dir_path
except Exception as error:
print(error)
return "Error", None
print("Finished processing segmented audio, now merging audio...")
merge_timestamps_file = os.path.join(os.path.dirname(new_dir_path), f"{os.path.basename(input_audio_path).split('.')[0]}_timestamps.txt")
tgt_sr, audio_opt = merge_audio(merge_timestamps_file)

merge_timestamps_file = os.path.join(
os.path.dirname(new_dir_path),
f"{os.path.basename(input_audio_path).split('.')[0]}_timestamps.txt",
)
tgt_sr, audio_opt = merge_audio(merge_timestamps_file)

else:
audio_opt = vc.pipeline(
hubert_model,
Expand All @@ -137,7 +142,6 @@ def vc_single(
hop_length,
f0_file=f0_file,
)


if output_path is not None:
sf.write(output_path, audio_opt, tgt_sr, format="WAV")
Expand Down Expand Up @@ -243,7 +247,7 @@ def get_vc(weight_root, sid):
index_rate=index_rate,
hop_length=hop_length,
output_path=output_file,
split_audio=split_audio
split_audio=split_audio,
)

if os.path.exists(output_file) and os.path.getsize(output_file) > 0:
Expand Down
4 changes: 3 additions & 1 deletion rvc/train/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -573,7 +573,9 @@ def train_and_evaluate(rank, epoch, hps, nets, optims, scaler, loaders, writers,
)

if rank == 0:
print(f"{hps.name} | epoch={epoch} | step={global_step} | {epoch_recorder.record()} | loss_disc={loss_disc:.3f} | loss_gen={loss_gen:.3f} | loss_fm={loss_fm:.3f} | loss_mel={loss_mel:.3f} | loss_kl={loss_kl:.3f}")
print(
f"{hps.name} | epoch={epoch} | step={global_step} | {epoch_recorder.record()} | loss_disc={loss_disc:.3f} | loss_gen={loss_gen:.3f} | loss_fm={loss_fm:.3f} | loss_mel={loss_mel:.3f} | loss_kl={loss_kl:.3f}"
)
if epoch >= hps.total_epoch and rank == 0:
print(
f"Training has been successfully completed with {epoch} epoch and {global_step} steps."
Expand Down