-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Create example_Lotka_Volterra_fast_kan.py
Create Lotka-Volterra example with fast KAN
- Loading branch information
Showing
1 changed file
with
183 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,183 @@ | ||
# Lotka-Volterra equations also known as predator-prey equations, describe the variation in populations | ||
# of two species which interact via predation. | ||
# For example, wolves (predators) and deer (prey). This is a classical model to represent the dynamic of two populations. | ||
|
||
# Let αlpha > 0, beta > 0, delta > 0 and gamma > 0 . The system is given by | ||
|
||
# dx/dt = x(alpha-beta*y) | ||
# dy/dt = y(-delta+gamma*x) | ||
|
||
# Where 'x' represents prey population and 'y' predators population. It’s a system of first-order ordinary differential equations. | ||
import numpy as np | ||
import torch.nn.functional as F | ||
import matplotlib.pyplot as plt | ||
from scipy import integrate | ||
import time | ||
import os | ||
import sys | ||
|
||
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE' | ||
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) | ||
|
||
from tedeous.data import Domain, Conditions, Equation | ||
from tedeous.model import Model | ||
from tedeous.callbacks import cache, early_stopping, plot | ||
from tedeous.optimizers.optimizer import Optimizer | ||
from tedeous.device import solver_device, check_device, device_type | ||
|
||
import fastkan | ||
|
||
solver_device('сpu') | ||
|
||
alpha = 20. | ||
beta = 20. | ||
delta = 20. | ||
gamma = 20. | ||
x0 = 4. | ||
y0 = 2. | ||
t0 = 0. | ||
tmax = 1. | ||
Nt = 300 | ||
|
||
domain = Domain() | ||
|
||
domain.variable('t', [t0, tmax], Nt) | ||
|
||
h = 0.0001 | ||
|
||
# initial conditions | ||
boundaries = Conditions() | ||
boundaries.dirichlet({'t': 0}, value=x0, var=0) | ||
boundaries.dirichlet({'t': 0}, value=y0, var=1) | ||
|
||
# equation system | ||
# eq1: dx/dt = x(alpha-beta*y) | ||
# eq2: dy/dt = y(-delta+gamma*x) | ||
|
||
# x var: 0 | ||
# y var:1 | ||
|
||
equation = Equation() | ||
|
||
eq1 = { | ||
'dx/dt': { | ||
'coeff': 1, | ||
'term': [0], | ||
'pow': 1, | ||
'var': [0] | ||
}, | ||
'-x*alpha': { | ||
'coeff': -alpha, | ||
'term': [None], | ||
'pow': 1, | ||
'var': [0] | ||
}, | ||
'+beta*x*y': { | ||
'coeff': beta, | ||
'term': [[None], [None]], | ||
'pow': [1, 1], | ||
'var': [0, 1] | ||
} | ||
} | ||
|
||
eq2 = { | ||
'dy/dt': { | ||
'coeff': 1, | ||
'term': [0], | ||
'pow': 1, | ||
'var': [1] | ||
}, | ||
'+y*delta': { | ||
'coeff': delta, | ||
'term': [None], | ||
'pow': 1, | ||
'var': [1] | ||
}, | ||
'-gamma*x*y': { | ||
'coeff': -gamma, | ||
'term': [[None], [None]], | ||
'pow': [1, 1], | ||
'var': [0, 1] | ||
} | ||
} | ||
|
||
equation.add(eq1) | ||
equation.add(eq2) | ||
|
||
net = fastkan.FastKAN( | ||
[1, 20, 20, 20, 20, 2], | ||
grid_min=-10., | ||
grid_max=10., | ||
num_grids=2, | ||
use_base_update=True, | ||
use_layernorm=False, | ||
base_activation=F.tanh, | ||
spline_weight_init_scale=0.1 | ||
) | ||
|
||
model = Model(net, domain, equation, boundaries) | ||
|
||
model.compile("NN", lambda_operator=1, lambda_bound=100, h=h) | ||
|
||
img_dir = os.path.join(os.path.dirname(__file__), 'img_Lotka_Volterra_fast_kan') | ||
|
||
start = time.time() | ||
|
||
cb_cache = cache.Cache(cache_verbose=True, model_randomize_parameter=1e-5) | ||
|
||
cb_es = early_stopping.EarlyStopping(eps=1e-6, | ||
loss_window=100, | ||
no_improvement_patience=1000, | ||
patience=5, | ||
randomize_parameter=1e-5, | ||
info_string_every=10) | ||
|
||
cb_plots = plot.Plots(save_every=1000, print_every=1000, img_dir=img_dir) | ||
|
||
optimizer = Optimizer('Adam', {'lr': 5e-4}) | ||
|
||
model.train(optimizer, 5e6, save_model=True, callbacks=[cb_es, cb_cache, cb_plots]) | ||
|
||
end = time.time() | ||
|
||
print('Time taken = {}'.format(end - start)) | ||
|
||
|
||
# scipy.integrate solution of Lotka_Volterra equations and comparison with NN results | ||
|
||
def deriv(X, t, alpha, beta, delta, gamma): | ||
x, y = X | ||
dotx = x * (alpha - beta * y) | ||
doty = y * (-delta + gamma * x) | ||
return np.array([dotx, doty]) | ||
|
||
|
||
t = np.linspace(0., tmax, Nt) | ||
|
||
X0 = [x0, y0] | ||
res = integrate.odeint(deriv, X0, t, args=(alpha, beta, delta, gamma)) | ||
x, y = res.T | ||
|
||
grid = domain.build('NN') | ||
|
||
plt.figure() | ||
plt.grid() | ||
plt.title("odeint and NN methods comparing") | ||
plt.plot(t, x, '+', label='preys_odeint') | ||
plt.plot(t, y, '*', label="predators_odeint") | ||
plt.plot(grid, net(grid)[:, 0].detach().numpy().reshape(-1), label='preys_NN') | ||
plt.plot(grid, net(grid)[:, 1].detach().numpy().reshape(-1), label='predators_NN') | ||
plt.xlabel('Time t, [days]') | ||
plt.ylabel('Population') | ||
plt.legend(loc='upper right') | ||
plt.show() | ||
|
||
plt.figure() | ||
plt.grid() | ||
plt.title('Phase plane: prey vs predators') | ||
plt.plot(net(grid)[:, 0].detach().numpy().reshape(-1), net(grid)[:, 1].detach().numpy().reshape(-1), '-*', label='NN') | ||
plt.plot(x, y, label='odeint') | ||
plt.xlabel('preys') | ||
plt.ylabel('predators') | ||
plt.legend() | ||
plt.show() |