Skip to content

IsaacLee0904/media_political

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

banner

Python version GitHub last commit GitHub last commit GitHub last commit

Badge source

media_political

Authors

Table of Contents

Data Source

  • Survey data

Repository structure

├── ETL.py                            <- Python code for data ETL.
├── ETL_function.py                   <- Python code with all function for ETL.
├── Factor_Analysis.py                <- Python code with all function for factor analysis.
├── DV_FAC.ipynb                      <- notebook with dependent variable factor analysis.
├── anti_party_FAC.ipynb              <- notebook with independent variable factor analysis.
├── Reliability_testing.ipynb         <- notebook with reliability testing for all index.
├── media_political_analysis.ipynb    <- modeling.
└── raw_data.csv

Workflow

Step1. Cleaning Data

  • Reshape raw data as a dataframe named ml_df
  • Filter out dependent variable as a dataframe named IV_df
  • Filter out independent variable as a dataframe named IV_df

Step2. Factor analysis

Independent Variable

  • Result of Bartlett’s test

    • Chi-square value : 358.638
    • p-value : 0.0
      • The Bartlett test produces a p-value that is less than 0.05. It means, we reject the null hypothesis or in this case, at least two population variances are different.
  • Result of Kaiser-Meyer-Olkin(KMO)

    • KMO value : 0.675
      • The KMO test produces a KMO value 0.675 which is great than the standard 0.5
  • Communality testing

    IV_communality_testing

    • Result
      • The yellow color indicates that the communality values meet the criteria — greater than 0.5. Eliminated Variable below 0.5 .
      • Also according to the Kaiser criteria, the number of factors generated is 2. It means that the 5 columns or well-known variables will be grouped and interpreted into 2 indicators.

    IV_scree_plot

    • Result
      • According to the scree plot we will get the elbow at 2 groups .

    IV_result

    • Result
      • According to the result above and reference can extract 2 indicators from 6 varaibles
        1. 極化現象(political_polarization) : anti_1
        2. 政黨形象(party_image) : anti_3 / anti_4 / anti_5

Dependent Variable

  • Result of Bartlett’s test

    • Chi-square value : 2616.18
    • p-value : 0.0
      • The Bartlett test produces a p-value that is less than 0.05. It means, we reject the null hypothesis or in this case, at least two population variances are different.
  • Result of Kaiser-Meyer-Olkin(KMO)

    • KMO value : 0.771
      • The KMO test produces a KMO value 0.675 which is great than the standard 0.5
  • Communality testing

    DV_communality_testing

    • Result
      • The yellow color indicates that the communality values meet the criteria — greater than 0.5. Eliminated Variable below 0.5 .
      • Also according to the Kaiser criteria, the number of factors generated is 4. It means that the 5 columns or well-known variables will be grouped and interpreted into 4 indicators.

    DV_scree_plot

    • Result
      • According to the scree plot we will get the elbow at 4 groups .

    DV_result

    • Result
      • According to the result above and reference can extract 4 indicators from 16 varaibles
        1. 線上媒體政治參與(online_media_pp) : read_media / like_media / share_media / comment_media -> reference : 劉嘉薇,2019
        2. 投票參與(voting) : election_mayor / election_18 -> reference : Barnes and Kaase (1979)
        3. 線下媒體政治參與(offline_media_pp) : read_election_news / read_election_leaflet -> reference : 徐火炎,2001
        4. 競選工作式政治參與(campaign_worker_pp) : campaign / volunteer -> reference : Mibrath and Goel,1977

Step3. Establish Index with result of factor analysis and reliability testing

  1. Method1 : Grouping without FAC but with reference or domain knowledge

Independent Variable

anti_party_vars = ['anti_1', 'anti_2', 'anti_3', 'anti_4', 'anti_5']
ml_df['anti_party'] = ml_df[anti_party_vars].mean(axis=1)
  • Reliability Testing Result :
    • anti_party Cronbach's alpha: 0.7564819668378749

Dependent Variable

online_pp_vars = ['TV_news_time', 'news_paper_time', 'int_news_time', 'TV_debate',     'read_media', 'like_media', 'share_media', 'comment_media', 'int_discuss']
offline_pp_vars = ['read_election_news', 'read_election_leaflet', 'convince', 'campaign', 'volunteer', 'election_mayor', 'election_18']
ml_df['online_pp'] = ml_df[online_pp_vars].mean(axis=1)
ml_df['offline_pp'] = ml_df[offline_pp_vars].mean(axis=1)
  • Reliability Testing Result :
    • online_pp Cronbach's alpha: 0.7717699094188335
    • offline_pp Cronbach's alpha: 0.809844435651358
    • Total Cronbanc's alpha: 0.7908071725350958
  1. Method2 : Get factors's mean after FAC(因素分析 -> 根據構面取平均)

Independent Variable

political_polarization_vars = ['anti_1']
party_image_vars = ['anti_3', 'anti_4', 'anti_5']
ml_df['political_polarization_mean'] = ml_df[political_polarization_vars].mean(axis=1)
ml_df['party_image_mean'] = ml_df[party_image_vars].mean(axis=1)
  • Reliability Testing Result :
    • political_polarization_mean Cronbach's alpha: 1.0
    • party_image_mean Cronbach's alpha: 0.8485172366992396
    • Total Cronbanc's alpha: 0.9242586183496198

Dependent Variable

ml_df['online_media_pp_mean'] = ml_df[online_media_pp_vars].mean(axis=1)
ml_df['voting_mean'] = ml_df[voting_vars].mean(axis=1)
ml_df['offline_media_pp_mean'] = ml_df[offline_media_pp_vars].mean(axis=1)
ml_df['campaign_worker_pp_mean'] = ml_df[campaign_worker_pp_vars].mean(axis=1)
  • Reliability Testing Result :
    • online_media_pp_mean Cronbach's alpha: 0.8150949007062644
    • voting_mean Cronbach's alpha: 0.9821418184416829
    • offline_media_pp_mean Cronbach's alpha: 0.9267895495036798
    • campaign_worker_pp_mean Cronbach's alpha: 0.9058515655096367
    • Total Cronbanc's alpha: 0.9074694585403159
  1. Method3 : Total score after FAC(因素分析 -> 根據構面取綜合得分)

Independent Variable

# Factor analysis with rotation
fa = FactorAnalyzer(n_factors = 2, rotation = 'varimax')
fa.fit(IV_df)
# Create a factor's names
facs = ['Factors' + ' ' + str(i + 1) for i in range(2)]
df_factors = pd.DataFrame(data = fa.fit_transform(IV_df),columns = facs)
df_factors.rename(columns = {'Factors 1': 'political_polarization_score', 
                           'Factors 2': 'party_image_score'}, inplace = True)  
ml_df = ml_df.join(df_factors)  
  • Reliability Testing Result :
    • political_polarization_mean Cronbach's alpha: 1.0
    • party_image_mean Cronbach's alpha: 0.8485172366992396
    • Total Cronbanc's alpha: 0.9242586183496198

Dependent Variable

# Factor analysis with rotation
fa = FactorAnalyzer(n_factors = 4, rotation = 'varimax')
fa.fit(DV_df)
# Create a factor's names
facs = ['Factors' + ' ' + str(i + 1) for i in range(4)]
df_factors = pd.DataFrame(data = fa.fit_transform(DV_df),columns = facs)                   
df_factors.rename(columns = {'Factors 1': 'online_media_pp_score', 
                           'Factors 2': 'voting_score',
                           'Factors 3': 'offline_media_pp_score',
                           'Factors 4': 'campaign_worker_pp_score'}, inplace = True)
ml_df = ml_df.join(df_factors)   
  • Reliability Testing Result :
    • online_media_pp_score Cronbach's alpha: 0.8311674955098114
    • voting_score Cronbach's alpha: 0.9666132108881862
    • offline_media_pp_score Cronbach's alpha: 0.8956567852883418
    • campaign_worker_pp_score Cronbach's alpha: 0.9058515655096367
    • Total Cronbanc's alpha: 0.899822264298994
  1. Method4 : Grouping and FAC get total score(因素分析 -> 全部算一個綜合得分)

Independent Variable

# Formula = (factor1_value * factor1_Proportion + factor2_value * factor2_Proportion) / Cumulative Variance
# Divide by the cumulative variance to get the final scores
ml_df['anti_party_scores'] = (ml_df['political_polarization_score'] * fa.get_factor_variance()[1][0] 
                             + ml_df['party_image_score'] * fa.get_factor_variance()[1][1]) / fa.get_factor_variance()[1].sum()  
  • Reliability Testing Result :
    • anti_party Cronbach's alpha: 0.7405711981868875

Dependent Variable

# Formula = (factor1_value * factor1_Proportion + factor2_value * factor2_Proportion) / Cumulative Variance
# online_pp
fa_online = FactorAnalyzer(n_factors = 3, rotation = 'varimax')
fa_online.fit(online_pp_df)
facs = ['Factors' + ' ' + str(i + 1) for i in range(3)]
df_factors_onlnie = pd.DataFrame(data = fa_online.fit_transform(online_pp_df),columns = facs)
ml_df['onlnie_scores'] = (df_factors_onlnie['Factors 1'] * fa_online.get_factor_variance()[1][0] + df_factors_onlnie['Factors 2'] * fa_online.get_factor_variance()[1][1] + df_factors_onlnie['Factors 3'] * fa_online.get_factor_variance()[1][2]) / fa_online.get_factor_variance()[1].sum()  
# offline_pp
fa_offline = FactorAnalyzer(n_factors = 2, rotation = 'varimax')
fa_offline.fit(offline_pp_df)
facs = ['Factors' + ' ' + str(i + 1) for i in range(2)]
df_factors_offlnie = pd.DataFrame(data = fa_offline.fit_transform(offline_pp_df),columns = facs)
ml_df['offlnie_scores'] = (df_factors_offlnie['Factors 1'] * fa_offline.get_factor_variance()[1][0] + df_factors_offlnie['Factors 2'] * fa_offline.get_factor_variance()[1][1]) / fa_offline.get_factor_variance()[1].sum() 
  • Reliability Testing Result :
    • onlnie_scores Cronbach's alpha: 0.7865005681513185
    • offlnie_scores Cronbach's alpha: 0.8136118677742157
    • Total Cronbanc's alpha: 0.800056217962767

Step4. Modeling

online_media_pp_mean ~ anti_party + IV

online_media_pp_mean = 1.0305 
+ 0.1111* C(ethnic, 台灣人[其他]) 
+ 0.0245* C(ethnic, 台灣人[原住民]) 
- 0.0189* C(ethnic, 台灣人[大陸各省市人]) 
- 0.0896* C(ethnic, 台灣人[本省客家人]) 
- 0.0550* C(ethnic, 台灣人[本省閩南人]) 
- 0.0433* C(Negative_1, 沒有影響[不知道]) 
+ 0.1241* C(Negative_1, 沒有影響[可能因此不去投票]) 
+ 0.0212* C(Negative_1, 沒有影響[轉而支持其他候選人]) 
+ 0.0017* C(Negative_2, 沒有影響[不知道]) 
- 0.2322* C(Negative_2, 沒有影響[可能因此不去投票]) 
+ 0.0998* C(Negative_2, 沒有影響[轉而支持其他候選人]) 
- 0.0122* C(Negative_3, 沒有影響[不知道]) 
+ 0.1329* C(Negative_3, 沒有影響[可能因此不去投票]) 
- 0.0576* C(Negative_3, 沒有影響[轉而支持其他候選人]) 
+ 0.0613* sex 
+ 0.1088* edu 
+ 0.0234* income 
+ 0.0509* political_knowledge 
+ 0.0085* TC_issue 
+ 0.0293* political_polarization_mean 
- 0.0623* party_image_mean
                             OLS Regression Results                             
================================================================================
Dep. Variable:     online_media_pp_mean   R-squared:                       0.076
Model:                              OLS   Adj. R-squared:                  0.035
Method:                   Least Squares   F-statistic:                     1.874
Date:                  Thu, 03 Aug 2023   Prob (F-statistic):             0.0111
Time:                          15:24:36   Log-Likelihood:                -312.35
No. Observations:                   503   AIC:                             668.7
Df Residuals:                       481   BIC:                             761.5
Df Model:                            21                                         
Covariance Type:              nonrobust                                         
===========================================================================================================================
                                                              coef    std err          t      P>|t|      [0.025      0.975]
---------------------------------------------------------------------------------------------------------------------------
Intercept                                                   1.0305      0.242      4.263      0.000       0.556       1.505
C(ethnic, Treatment(reference="臺灣人"))[T.其他]                 0.1111      0.147      0.757      0.450      -0.177       0.400
C(ethnic, Treatment(reference="臺灣人"))[T.原住民]                0.0245      0.166      0.148      0.883      -0.302       0.350
C(ethnic, Treatment(reference="臺灣人"))[T.大陸各省市人]            -0.0189      0.155     -0.122      0.903      -0.323       0.285
C(ethnic, Treatment(reference="臺灣人"))[T.本省客家人]             -0.0896      0.109     -0.818      0.414      -0.305       0.126
C(ethnic, Treatment(reference="臺灣人"))[T.本省閩南人]             -0.0550      0.088     -0.625      0.532      -0.228       0.118
C(Negative_1, Treatment(reference="沒有影響"))[T.不知道]          -0.0433      0.089     -0.486      0.627      -0.218       0.132
C(Negative_1, Treatment(reference="沒有影響"))[T.可能因此不去投票]      0.1241      0.098      1.263      0.207      -0.069       0.317
C(Negative_1, Treatment(reference="沒有影響"))[T.轉而支持其他候選人]     0.0212      0.054      0.390      0.697      -0.085       0.128
C(Negative_2, Treatment(reference="沒有影響"))[T.不知道]           0.0017      0.089      0.020      0.984      -0.173       0.176
C(Negative_2, Treatment(reference="沒有影響"))[T.可能因此不去投票]     -0.2322      0.134     -1.734      0.084      -0.495       0.031
C(Negative_2, Treatment(reference="沒有影響"))[T.轉而支持其他候選人]     0.0998      0.051      1.960      0.051      -0.000       0.200
C(Negative_3, Treatment(reference="沒有影響"))[T.不知道]          -0.0122      0.083     -0.147      0.883      -0.175       0.151
C(Negative_3, Treatment(reference="沒有影響"))[T.可能因此不去投票]      0.1329      0.114      1.162      0.246      -0.092       0.358
C(Negative_3, Treatment(reference="沒有影響"))[T.轉而支持其他候選人]    -0.0576      0.053     -1.098      0.273      -0.161       0.046
sex                                                         0.0613      0.046      1.329      0.185      -0.029       0.152
edu                                                         0.1088      0.047      2.295      0.022       0.016       0.202
income                                                      0.0234      0.021      1.132      0.258      -0.017       0.064
political_knowledge                                         0.0509      0.038      1.355      0.176      -0.023       0.125
TC_issue                                                    0.0085      0.019      0.450      0.653      -0.029       0.046
political_polarization_mean                                 0.0293      0.025      1.190      0.234      -0.019       0.078
party_image_mean                                           -0.0623      0.022     -2.854      0.004      -0.105      -0.019
==============================================================================
Omnibus:                      143.226   Durbin-Watson:                   1.967
Prob(Omnibus):                  0.000   Jarque-Bera (JB):              422.719
Skew:                           1.353   Prob(JB):                     1.61e-92
Kurtosis:                       6.585   Cond. No.                         101.
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

voting_mean ~ anti_party + IV

voting_mean = 1.5372 
+ 0.1619* ethnic('其他') 
+ 0.6316* ethnic('原住民') 
- 0.2645* ethnic('大陸各省市人') 
+ 0.1775* ethnic('本省客家人') 
+ 0.0381* ethnic('本省閩南人') 
- 0.0573* Negative_1('不知道') 
+ 0.1274* Negative_1('可能因此不去投票') 
+ 0.3580* Negative_1('轉而支持其他候選人') 
- 0.3703* Negative_2('不知道') 
- 0.4460* Negative_2('可能因此不去投票') 
+ 0.0011* Negative_2('轉而支持其他候選人') 
- 0.0986* Negative_3('不知道') 
- 0.4686* Negative_3('可能因此不去投票') 
- 0.1716* Negative_3('轉而支持其他候選人') 
- 0.1267* sex 
+ 0.1772* edu 
+ 0.1455* income 
+ 0.2526* political_knowledge 
- 0.0307* TC_issue 
+ 0.0695* political_polarization_mean 
- 0.1438* party_image_mean;
                            OLS Regression Results                            
==============================================================================
Dep. Variable:            voting_mean   R-squared:                       0.107
Model:                            OLS   Adj. R-squared:                  0.068
Method:                 Least Squares   F-statistic:                     2.741
Date:                Thu, 03 Aug 2023   Prob (F-statistic):           6.10e-05
Time:                        15:24:36   Log-Likelihood:                -801.21
No. Observations:                 503   AIC:                             1646.
Df Residuals:                     481   BIC:                             1739.
Df Model:                          21                                         
Covariance Type:            nonrobust                                         
===========================================================================================================================
                                                              coef    std err          t      P>|t|      [0.025      0.975]
---------------------------------------------------------------------------------------------------------------------------
Intercept                                                   1.5372      0.639      2.406      0.016       0.282       2.792
C(ethnic, Treatment(reference="臺灣人"))[T.其他]                 0.1619      0.388      0.417      0.677      -0.601       0.924
C(ethnic, Treatment(reference="臺灣人"))[T.原住民]                0.6316      0.438      1.441      0.150      -0.230       1.493
C(ethnic, Treatment(reference="臺灣人"))[T.大陸各省市人]            -0.2645      0.409     -0.647      0.518      -1.068       0.539
C(ethnic, Treatment(reference="臺灣人"))[T.本省客家人]              0.1775      0.289      0.613      0.540      -0.391       0.746
C(ethnic, Treatment(reference="臺灣人"))[T.本省閩南人]              0.0381      0.233      0.163      0.870      -0.419       0.495
C(Negative_1, Treatment(reference="沒有影響"))[T.不知道]          -0.0573      0.236     -0.243      0.808      -0.520       0.405
C(Negative_1, Treatment(reference="沒有影響"))[T.可能因此不去投票]      0.1274      0.260      0.491      0.624      -0.383       0.638
C(Negative_1, Treatment(reference="沒有影響"))[T.轉而支持其他候選人]     0.3580      0.143      2.497      0.013       0.076       0.640
C(Negative_2, Treatment(reference="沒有影響"))[T.不知道]          -0.3703      0.235     -1.578      0.115      -0.831       0.091
C(Negative_2, Treatment(reference="沒有影響"))[T.可能因此不去投票]     -0.4460      0.354     -1.260      0.208      -1.141       0.249
C(Negative_2, Treatment(reference="沒有影響"))[T.轉而支持其他候選人]     0.0011      0.135      0.008      0.993      -0.263       0.265
C(Negative_3, Treatment(reference="沒有影響"))[T.不知道]          -0.0986      0.219     -0.450      0.653      -0.529       0.332
C(Negative_3, Treatment(reference="沒有影響"))[T.可能因此不去投票]     -0.4686      0.302     -1.550      0.122      -1.063       0.125
C(Negative_3, Treatment(reference="沒有影響"))[T.轉而支持其他候選人]    -0.1716      0.139     -1.236      0.217      -0.444       0.101
sex                                                        -0.1267      0.122     -1.040      0.299      -0.366       0.113
edu                                                         0.1772      0.125      1.414      0.158      -0.069       0.423
income                                                      0.1455      0.055      2.662      0.008       0.038       0.253
political_knowledge                                         0.2526      0.099      2.543      0.011       0.057       0.448
TC_issue                                                   -0.0307      0.050     -0.612      0.541      -0.129       0.068
political_polarization_mean                                 0.0695      0.065      1.067      0.287      -0.058       0.197
party_image_mean                                           -0.1438      0.058     -2.492      0.013      -0.257      -0.030
==============================================================================
Omnibus:                      316.969   Durbin-Watson:                   2.009
Prob(Omnibus):                  0.000   Jarque-Bera (JB):               42.405
Skew:                          -0.387   Prob(JB):                     6.19e-10
Kurtosis:                       1.806   Cond. No.                         101.
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

offline_media_pp_mean ~ anti_party + IV

offline_media_pp_mean = 1.5678 
+ 0.3867* C(ethnic, 台灣人[其他]) 
+ 0.2094* C(ethnic, 台灣人[原住民]) 
- 0.4852* C(ethnic, 台灣人[大陸各省市人]) 
- 0.1455* C(ethnic, 台灣人[本省客家人]) 
- 0.0929* C(ethnic, 台灣人[本省閩南人]) 
- 0.1142* C(Negative_1, 沒有影響[不知道]) 
+ 0.1127* C(Negative_1, 沒有影響[可能因此不去投票]) 
+ 0.2423* C(Negative_1, 沒有影響[轉而支持其他候選人]) 
- 0.2760* C(Negative_2, 沒有影響[不知道]) 
- 0.4682* C(Negative_2, 沒有影響[可能因此不去投票]) 
+ 0.1706* C(Negative_2, 沒有影響[轉而支持其他候選人]) 
- 0.1731* C(Negative_3, 沒有影響[不知道]) 
- 0.1712* C(Negative_3, 沒有影響[可能因此不去投票]) 
- 0.0360* C(Negative_3, 沒有影響[轉而支持其他候選人]) 
- 0.0826* sex 
+ 0.0346* edu 
+ 0.0848* income 
+ 0.1355* political_knowledge 
+ 0.0207* TC_issue 
+ 0.1235* political_polarization_mean 
- 0.0909* party_image_mean
                              OLS Regression Results                             
=================================================================================
Dep. Variable:     offline_media_pp_mean   R-squared:                       0.118
Model:                               OLS   Adj. R-squared:                  0.080
Method:                    Least Squares   F-statistic:                     3.066
Date:                   Thu, 03 Aug 2023   Prob (F-statistic):           7.27e-06
Time:                           15:24:36   Log-Likelihood:                -676.56
No. Observations:                    503   AIC:                             1397.
Df Residuals:                        481   BIC:                             1490.
Df Model:                             21                                         
Covariance Type:               nonrobust                                         
===========================================================================================================================
                                                              coef    std err          t      P>|t|      [0.025      0.975]
---------------------------------------------------------------------------------------------------------------------------
Intercept                                                   1.5678      0.499      3.144      0.002       0.588       2.548
C(ethnic, Treatment(reference="臺灣人"))[T.其他]                 0.3867      0.303      1.277      0.202      -0.208       0.982
C(ethnic, Treatment(reference="臺灣人"))[T.原住民]                0.2094      0.342      0.612      0.541      -0.463       0.882
C(ethnic, Treatment(reference="臺灣人"))[T.大陸各省市人]            -0.4852      0.319     -1.521      0.129      -1.112       0.142
C(ethnic, Treatment(reference="臺灣人"))[T.本省客家人]             -0.1455      0.226     -0.644      0.520      -0.589       0.298
C(ethnic, Treatment(reference="臺灣人"))[T.本省閩南人]             -0.0929      0.182     -0.511      0.610      -0.450       0.264
C(Negative_1, Treatment(reference="沒有影響"))[T.不知道]          -0.1142      0.184     -0.622      0.535      -0.475       0.247
C(Negative_1, Treatment(reference="沒有影響"))[T.可能因此不去投票]      0.1127      0.203      0.556      0.578      -0.285       0.511
C(Negative_1, Treatment(reference="沒有影響"))[T.轉而支持其他候選人]     0.2423      0.112      2.165      0.031       0.022       0.462
C(Negative_2, Treatment(reference="沒有影響"))[T.不知道]          -0.2760      0.183     -1.507      0.133      -0.636       0.084
C(Negative_2, Treatment(reference="沒有影響"))[T.可能因此不去投票]     -0.4682      0.276     -1.695      0.091      -1.011       0.075
C(Negative_2, Treatment(reference="沒有影響"))[T.轉而支持其他候選人]     0.1706      0.105      1.624      0.105      -0.036       0.377
C(Negative_3, Treatment(reference="沒有影響"))[T.不知道]          -0.1731      0.171     -1.013      0.312      -0.509       0.163
C(Negative_3, Treatment(reference="沒有影響"))[T.可能因此不去投票]     -0.1712      0.236     -0.725      0.469      -0.635       0.293
C(Negative_3, Treatment(reference="沒有影響"))[T.轉而支持其他候選人]    -0.0360      0.108     -0.332      0.740      -0.249       0.177
sex                                                        -0.0826      0.095     -0.868      0.386      -0.269       0.104
edu                                                         0.0346      0.098      0.353      0.724      -0.158       0.227
income                                                      0.0848      0.043      1.987      0.047       0.001       0.169
political_knowledge                                         0.1355      0.078      1.747      0.081      -0.017       0.288
TC_issue                                                    0.0207      0.039      0.531      0.596      -0.056       0.098
political_polarization_mean                                 0.1235      0.051      2.429      0.015       0.024       0.223
party_image_mean                                           -0.0909      0.045     -2.019      0.044      -0.179      -0.002
==============================================================================
Omnibus:                       34.965   Durbin-Watson:                   1.965
Prob(Omnibus):                  0.000   Jarque-Bera (JB):               13.143
Skew:                          -0.088   Prob(JB):                      0.00140
Kurtosis:                       2.228   Cond. No.                         101.
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

campaign_worker_pp_mean ~ anti_party + IV

campaign_worker_pp_mean = 1.4316
+ 0.2027* C(ethnic, 台灣人[其他])
- 0.1233* C(ethnic, 台灣人[原住民])
- 0.0985* C(ethnic, 台灣人[大陸各省市人])
- 0.0284* C(ethnic, 台灣人[本省客家人])
- 0.0010* C(ethnic, 台灣人[本省閩南人])
+ 0.0542* C(Negative_1, 沒有影響[不知道])
+ 0.0128* C(Negative_1, 沒有影響[可能因此不去投票])
- 0.0341* C(Negative_1, 沒有影響[轉而支持其他候選人])
+ 0.0694* C(Negative_2, 沒有影響[不知道])
- 0.1248* C(Negative_2, 沒有影響[可能因此不去投票])
+ 0.0905* C(Negative_2, 沒有影響[轉而支持其他候選人])
- 0.0097* C(Negative_3, 沒有影響[不知道])
+ 0.2979* C(Negative_3, 沒有影響[可能因此不去投票])
+ 0.0143* C(Negative_3, 沒有影響[轉而支持其他候選人])
+ 0.0426* sex
- 0.0385* edu
+ 0.0065* income
- 0.0500* political_knowledge
+ 0.0165* TC_issue
- 0.0394* political_polarization_mean
+ 0.0110* party_image_mean
                               OLS Regression Results                              
===================================================================================
Dep. Variable:     campaign_worker_pp_mean   R-squared:                       0.039
Model:                                 OLS   Adj. R-squared:                 -0.003
Method:                      Least Squares   F-statistic:                    0.9308
Date:                     Thu, 03 Aug 2023   Prob (F-statistic):              0.551
Time:                             15:24:37   Log-Likelihood:                -352.98
No. Observations:                      503   AIC:                             750.0
Df Residuals:                          481   BIC:                             842.8
Df Model:                               21                                         
Covariance Type:                 nonrobust                                         
===========================================================================================================================
                                                              coef    std err          t      P>|t|      [0.025      0.975]
---------------------------------------------------------------------------------------------------------------------------
Intercept                                                   1.4316      0.262      5.463      0.000       0.917       1.947
C(ethnic, Treatment(reference="臺灣人"))[T.其他]                 0.2027      0.159      1.274      0.203      -0.110       0.515
C(ethnic, Treatment(reference="臺灣人"))[T.原住民]               -0.1233      0.180     -0.686      0.493      -0.477       0.230
C(ethnic, Treatment(reference="臺灣人"))[T.大陸各省市人]            -0.0985      0.168     -0.587      0.557      -0.428       0.231
C(ethnic, Treatment(reference="臺灣人"))[T.本省客家人]             -0.0284      0.119     -0.239      0.811      -0.262       0.205
C(ethnic, Treatment(reference="臺灣人"))[T.本省閩南人]             -0.0010      0.095     -0.010      0.992      -0.189       0.187
C(Negative_1, Treatment(reference="沒有影響"))[T.不知道]           0.0542      0.097      0.561      0.575      -0.136       0.244
C(Negative_1, Treatment(reference="沒有影響"))[T.可能因此不去投票]      0.0128      0.107      0.120      0.905      -0.197       0.222
C(Negative_1, Treatment(reference="沒有影響"))[T.轉而支持其他候選人]    -0.0341      0.059     -0.580      0.562      -0.150       0.081
C(Negative_2, Treatment(reference="沒有影響"))[T.不知道]           0.0694      0.096      0.721      0.471      -0.120       0.259
C(Negative_2, Treatment(reference="沒有影響"))[T.可能因此不去投票]     -0.1248      0.145     -0.859      0.391      -0.410       0.161
C(Negative_2, Treatment(reference="沒有影響"))[T.轉而支持其他候選人]     0.0905      0.055      1.640      0.102      -0.018       0.199
C(Negative_3, Treatment(reference="沒有影響"))[T.不知道]          -0.0097      0.090     -0.108      0.914      -0.186       0.167
C(Negative_3, Treatment(reference="沒有影響"))[T.可能因此不去投票]      0.2979      0.124      2.402      0.017       0.054       0.542
C(Negative_3, Treatment(reference="沒有影響"))[T.轉而支持其他候選人]     0.0143      0.057      0.251      0.802      -0.098       0.126
sex                                                         0.0426      0.050      0.852      0.395      -0.056       0.141
edu                                                        -0.0385      0.051     -0.748      0.455      -0.139       0.063
income                                                      0.0065      0.022      0.290      0.772      -0.038       0.051
political_knowledge                                        -0.0500      0.041     -1.228      0.220      -0.130       0.030
TC_issue                                                    0.0165      0.021      0.803      0.422      -0.024       0.057
political_polarization_mean                                -0.0394      0.027     -1.476      0.141      -0.092       0.013
party_image_mean                                            0.0110      0.024      0.464      0.643      -0.036       0.058
==============================================================================
Omnibus:                      399.613   Durbin-Watson:                   1.889
Prob(Omnibus):                  0.000   Jarque-Bera (JB):             5393.751
Skew:                           3.545   Prob(JB):                         0.00
Kurtosis:                      17.391   Cond. No.                         101.
==============================================================================

Reference

The Factor Analysis for Constructing a Composite Index

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published