Skip to content
This repository has been archived by the owner on Jul 24, 2024. It is now read-only.

Commit

Permalink
rename old posts
Browse files Browse the repository at this point in the history
Signed-off-by: Jianliang Shen <[email protected]>
  • Loading branch information
Jianliang Shen committed Jul 18, 2024
1 parent 53d79a0 commit c6f6f61
Show file tree
Hide file tree
Showing 46 changed files with 24 additions and 6 deletions.
24 changes: 18 additions & 6 deletions source/_posts/GPU/Arch.md
Original file line number Diff line number Diff line change
Expand Up @@ -224,7 +224,9 @@ CUDA Core 专门处理图形工作负载,Tensor Core 更擅长处理数字工

### Fermi 架构

[Fermi架构白皮书](https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf)
<!-- [Fermi架构白皮书](https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf) -->

<iframe src="https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf" width="100%" height="800" name="topFrame" scrolling="yes" noresize="noresize" frameborder="0" id="topFrame"></iframe>

Fermi 是 Nvidia 在 2010 年发布的架构,引入了很多今天也仍然不过时的概念。英伟达第一个采用 GPU-Direct 技术的 GPU 架构,它拥有 32 个 SM(流多处理器)和 16 个 PolyMorph Engine 阵列。该架构采用了 4 颗芯片的模块化设计,拥有 32 个光栅化处理单元和 16 个纹理单元,搭配 GDDR5 显存。

Expand Down Expand Up @@ -266,6 +268,8 @@ SM 内还有 16 个 LD/ST 单元,也就是 Load/Store 单元,支持 16 个

[2014 Maxwell架构白皮书](https://developer.nvidia.com/maxwell-compute-architecture)

<!-- <iframe src="https://developer.nvidia.com/maxwell-compute-architecture" width="100%" height="800" name="topFrame" scrolling="yes" noresize="noresize" frameborder="0" id="topFrame"></iframe> -->

![](/img/post_pics/gpu/arch/12.png)

Maxwell的 SM 开始做减法了,每个 SM(SMM)中包含:
Expand Down Expand Up @@ -324,7 +328,9 @@ Tesla微观架构总览图如上。下面将阐述它的特性和概念:

### Volta 架构

[Volta白皮书](https://images.nvidia.cn/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf)
<!-- [Volta白皮书](https://images.nvidia.cn/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf) -->

<iframe src="https://images.nvidia.cn/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf" width="100%" height="800" name="topFrame" scrolling="yes" noresize="noresize" frameborder="0" id="topFrame"></iframe>

![](/img/post_pics/gpu/arch/14.png)

Expand All @@ -337,7 +343,9 @@ Tesla微观架构总览图如上。下面将阐述它的特性和概念:

### Turing架构

[2018Turing架构白皮书](https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf)
<!-- [2018Turing架构白皮书](https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf) -->

<iframe src="https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf" width="100%" height="800" name="topFrame" scrolling="yes" noresize="noresize" frameborder="0" id="topFrame"></iframe>

![](/img/post_pics/gpu/arch/15.png)

Expand All @@ -355,7 +363,9 @@ Turing架构采用全新SM设计,每个TPC均包含两个SM,每个SM共有64

### Ampere 架构

[Ampere架构白皮书](https://images.nvidia.cn/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf)
<!-- [Ampere架构白皮书](https://images.nvidia.cn/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf) -->

<iframe src="https://images.nvidia.cn/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf" width="100%" height="800" name="topFrame" scrolling="yes" noresize="noresize" frameborder="0" id="topFrame"></iframe>

代表产品为 GeForce RTX 30 系列。该架构继续优化并行计算能力,并引入了更先进的 GDDR6X 内存技术,大幅提高了内存带宽和性能。相比 Turing 架构,Ampere 架构中的 SM 在 Turing 基础上增加了一倍的 FP32 运算单元,这使得每个 SM 的 FP32 运算单元数量提高了一倍,同时吞吐量也就变为了一倍。此外,安培架构还改进了着色器性能和张量核(Tensor Cores),进一步加速深度学习和人工智能任务的处理速度。

Expand Down Expand Up @@ -388,8 +398,9 @@ NVIDIA A100基于7nm Ampere GA100 GPU,具有6912 CUDA内核和432 Tensor Core
![](/img/post_pics/gpu/arch/18.png)

[Hopper架构白皮书](https://resources.nvidia.com/en-us-tensor-core?ncid=no-ncid)
[Hopper中文架构白皮书](https://resources.nvidia.com/cn-hopper-architecture?ncid=no-ncid)
<!-- [Hopper中文架构白皮书](https://resources.nvidia.com/cn-hopper-architecture?ncid=no-ncid) -->

<iframe src="https://resources.nvidia.com/cn-hopper-architecture?ncid=no-ncid" width="100%" height="800" name="topFrame" scrolling="yes" noresize="noresize" frameborder="0" id="topFrame"></iframe>

作为面向专业计算的GPU,H100采用HBM3高带宽显存,NVIDIA将六颗HBM3高带宽显存堆栈在核心两侧。核心内建5120-bit的HBM3显存位宽,英伟达可配置最高80GB显存,SXM5版(HBM3显存)带宽更是达到3TB/s,PCIe版本(HBM2e)则是2TB/s。

Expand All @@ -402,5 +413,6 @@ H100的主机接口同样迎来升级,SXM外形的PCB板配备新一代NVLink
### Blackwell 架构

[Blackwell 架构](https://www.nvidia.cn/data-center/technologies/blackwell-architecture/)
[白皮书](https://resources.nvidia.com/en-us-blackwell-architecture?ncid=no-ncid)
<!-- [白皮书](https://resources.nvidia.com/en-us-blackwell-architecture?ncid=no-ncid) -->

<iframe src="https://resources.nvidia.com/en-us-blackwell-architecture?ncid=no-ncid" width="100%" height="800" name="topFrame" scrolling="yes" noresize="noresize" frameborder="0" id="topFrame"></iframe>
5 changes: 5 additions & 0 deletions source/_posts/GPU/Computing-Startup.md
Original file line number Diff line number Diff line change
Expand Up @@ -48,9 +48,14 @@ categories:
| [Pytorch Examples](https://github.com/pytorch/examples)| 围绕 pytorch 的视觉、文本、强化学习等方面的一组示例。 |
| [Pytorch 源码仓库](https://github.com/pytorch/pytorch)| 具有强大 GPU 加速的 Python 张量和动态神经网络。 |

<iframe src="https://pytorch.org/tutorials/beginner/basics/intro.html" width="100%" height="800" name="topFrame" scrolling="yes" noresize="noresize" frameborder="0" id="topFrame"></iframe>

### Cuda

[CUDA 官方文档](https://docs.nvidia.com/cuda/)

<iframe src="https://docs.nvidia.com/cuda/" width="100%" height="800" name="topFrame" scrolling="yes" noresize="noresize" frameborder="0" id="topFrame"></iframe>

[CUDA Runtime API](https://docs.nvidia.com/cuda/cuda-runtime-api/index.html)
[CUDA Samples](https://github.com/NVIDIA/cuda-samples)

Expand Down
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@ categories:

原文:[Information security techniques-General framework for confidential computing](https://www.tc260.org.cn/file/2023-04-28/e9d12373-73ee-47e9-9ca0-8bddd02f27f0.pdf)

<iframe src="https://www.tc260.org.cn/file/2023-04-28/e9d12373-73ee-47e9-9ca0-8bddd02f27f0.pdf" width="100%" height="1000" name="topFrame" scrolling="yes" noresize="noresize" frameborder="0" id="topFrame"></iframe>

## 目录

Expand Down

0 comments on commit c6f6f61

Please sign in to comment.