-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
75 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
import torch | ||
from models.experimental import attempt_load | ||
from utils.datasets import LoadStreams, LoadImages | ||
from utils.general import check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, strip_optimizer, set_logging | ||
from utils.torch_utils import select_device, load_classifier, time_synchronized | ||
from utils.plots import plot_one_box | ||
import argparse | ||
import time | ||
import cv2 | ||
|
||
def detect(save_img=False, save_txt=False, imgsz=(640, 640), conf_thres=0.4, iou_thres=0.5, max_det=1000): | ||
# Initialize | ||
device = select_device('') | ||
half = device.type != 'cpu' # half precision only supported on CUDA | ||
|
||
# Load model | ||
model = attempt_load('yolov5s.pt', map_location=device) # load FP32 model | ||
stride = int(model.stride.max()) # model stride | ||
imgsz = check_img_size(imgsz, s=stride) # check image size | ||
|
||
# Get names and colors | ||
names = model.module.names if hasattr(model, 'odule') else model.names | ||
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names] | ||
|
||
# Run inference | ||
if device.type!= 'cpu': | ||
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once | ||
t0 = time.time() | ||
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img | ||
_ = model(img) if device.type!= 'cpu' else None # run once | ||
|
||
# Set Dataloader | ||
vid_path, vid_writer = None, None | ||
dataset = LoadStreams('https://www.youtube.com/watch?v=dQw4w9WgXcQ', img_size=imgsz, stride=stride) | ||
|
||
# Run inference | ||
t = time_synchronized() | ||
for path, img, im0s, vid_cap in dataset: | ||
img = torch.from_numpy(img).to(device) | ||
img = img.half() if half else img.float() # uint8 to fp16/32 | ||
img /= 255.0 # 0 - 255 to 0.0 - 1.0 | ||
if img.ndimension() == 3: | ||
img = img.unsqueeze(0) | ||
|
||
# Inference | ||
t1 = time_synchronized() | ||
pred = model(img, augment=False)[0] | ||
|
||
# Apply NMS | ||
pred = non_max_suppression(pred, conf_thres, iou_thres, max_det=max_det) | ||
|
||
# Process detections | ||
for i, det in enumerate(pred): # detections per image | ||
if len(det): | ||
# Rescale boxes from img_size to im0 size | ||
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0s.shape).round() | ||
|
||
# Print results | ||
for c in det[:, -1].unique(): | ||
n = (det[:, -1] == c).sum() # detections per class | ||
s = f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string | ||
|
||
# Write results | ||
for *xyxy, conf, cls in reversed(det): | ||
if save_txt: # Write to file | ||
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh | ||
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format | ||
with open(txt_path + '.txt', 'a') as f: | ||
f.write(('%g ' len(line)).rstrip() % line + '\n') | ||
|
||
if save_img or view_img: # Add bbox to image | ||
label = f'{names[int(cls)]} {conf:.2f}' | ||
plot_one_box(xyxy, im0s, label=label, color=colors[int(cls)], line_thickness=3) | ||
|
||
print(f'Done. ({time.time() - t0:.3f}s)') |