Lin-Zhuo Chen, Zheng Lin, Ziqin Wang, Yong-Liang Yang and Ming-Ming Cheng
⭐ Project Home »
The official repo of the TIP 2021 paper `` Spatial information guided Convolution for Real-Time RGBD Semantic Segmentation.
Speed is related to the hardware spec (e.g. CPU, GPU, RAM, etc), so it is hard to make an equal comparison.
I get the following results under NVIDIA 1080TI GPU, Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz:
Model | mIoU(480x640) | mIoU(MS) | FPS(480x640) | FPS(425x560) |
---|---|---|---|---|
SGNet(Res50) | 47.7% | 48.6% | 35 | 39 |
SGNet | 49.8% | 51.1% | 26 | 28 |
SGNet_ASPP | 50.2% | 51.1% | 24 | 26 |
If you want to measure speed on more advanced graphics card (such as 2080ti), you can use the environment of pytorch 0.4.1 CUDA 9.2 to measure inference speed.
- PyTorch == 0.4.1
- tqdm
- CUDA==8.0
- CUDNN=7.1.4
- pillow
- numpy
- tensorboardX
- tqdm
Download NYUDv2 dataset and trained model:
Dataset | model | model | model | |
---|---|---|---|---|
BaiduDrive(passwd: scon) | NYUDv2 | SGNet_Res50 | SGNet | SGNet_ASPP |
-
Put the pretrained model into
pretrained_weights
folder and unzip the dataset intodataset
folder. -
To compile the InPlace-ABN and S-Conv operation, please run:
## compile InPlace-ABN cd graphs/ops/libs sh build.sh python build.py ## compile S-Conv cd .. sh make.sh
-
Modify the config in
configs/sgnet_nyud_test.json
(mainly check "trained_model_path"). To test the model with imput size$480 \times 640$ , please run:## SGNet python main.py ./configs/sgnet_nyud_test.json ## SGNet_ASPP python main.py ./configs/sgnet_aspp_nyud_test.json ## SGNet_Res50 python main.py ./configs/sgnet_res50_nyud_test.json
-
You can run the follow command to test the model inference speed, input the image size such as 480 x 640:
## SGNet python main.py ./configs/sgnet_nyud_fps.json ## SGNet_ASPP python main.py ./configs/sgnet_aspp_nyud_fps.json ## SGNet_Res50 python main.py ./configs/sgnet_res50_nyud_fps.json
If you find this work is useful for your research, please cite our paper:
@article{21TIP-SGNet,
author={Lin-Zhuo Chen and Zheng Lin and Ziqin Wang and Yong-Liang Yang and Ming-Ming Cheng},
journal={IEEE Transactions on Image Processing},
title={Spatial Information Guided Convolution for Real-Time RGBD Semantic Segmentation},
year={2021},
volume={30},
pages={2313-2324},
doi={10.1109/TIP.2021.3049332}
}
Deformable-Convolution-V2-PyTorch
If you have any questions, feel free to contact me via linzhuochen🥳foxmail😲com