Skip to content

Commit

Permalink
updated section 6 and corrected the final-2022
Browse files Browse the repository at this point in the history
  • Loading branch information
Muatyz committed Jan 12, 2025
1 parent f5ba7bd commit 41f3b2a
Show file tree
Hide file tree
Showing 15 changed files with 118 additions and 31 deletions.
27 changes: 1 addition & 26 deletions contents/final-2022/._wordcount_selection.tex
Original file line number Diff line number Diff line change
@@ -1,26 +1 @@
根据 $J = 0$, 而 $-|J|\leq M\leq |J|$, 夹逼定理得到 $M= 0$. 而磁量子数守恒, 所以 $J_{1,z} + J_{2,z} = J_{z} = 0$. 已知 C-G 系数可以用于将 $|J,M;j_{1},j_{2}\rangle$ 以基矢 $|j_{1},m_{1};j_{2},m_{2}\rangle$ 展开, 代入上述讨论结果有

\begin{align*}
|0,0;j,j\rangle = \sum_{m_,-m}^{-j\leq m\leq j}C_{j,j,m,-m}^{0,0}|j,m;j,-m\rangle
\end{align*}

概率即为 $P(m_{1}=m,m_{2}=-m) = |C_{j,j,m,-m}^{0,0}|^{2}$. 那么问题就来到如何计算这个特殊的 C-G 系数. 根据 C-G 系数的递推定义, 可以得到其解析表达式

\begin{align*}
&\langle j_{1},m_{1};j_{2},m_{2}|J,M;j_{1},j_{2}\rangle \\
&=\sqrt{\frac{(2J+1)(J+j_{1}-j_{2})!(J-j_{1}+j_{2})!(j_{1}+j_{2}-J)!}{(j_{1}+j_{2}+J+1)!}}\\
&\times \sqrt{(J+M)!(J-M)!(j_{1}+m_{1})!(j_{1}-m_{1})!(j_{2}+m_{2})!(j_{2}-m_{2})!}\\
&\times \sum_{k_{\text{min}}}^{k_{\text{max}}}\frac{(-1)^{k}}{k!(j_{1}+j_{2}-J-k)!(j_{1}-m_{1}-k)!(j_{2}+m_{2}-k)!(J-M-k)!}\\
&\times \frac{1}{(J-j_{2}+m_{1}+k)!(J-j_{1}-m_{2}+k)!}\\
k_{\text{min}} &= \text{max}\{0,j_{2}-m_{1}-J,j_{1}+m_{2}-J\},\quad
k_{\text{max}} = \text{min}\{j_{1}+j_{2}-J, j_{1}-m_{1},j_{2}+m_{2}\}
\end{align*}

所以代入 $j_{1}=j_{2}=j$, $m_{1}=-m_{2}=m$, 即有 $\begin{aligned}
C_{j,m,j,-m}^{0,0} = \frac{(-1)^{j-m}}{\sqrt{2j+1}}
\end{aligned}$, 显然因为平方消去了可能存在的负号, 使得
$|j,m;j,-m\rangle,\quad\forall m\in \{-j,-j+1,\cdots,j-1,j\}$ 等概率, 所以得到

\begin{align*}
\boxed{P(m_{1}=m,m_{2}=-m) = \frac{1}{2j+1}}
\end{align*}
\left[(\langle i|_{A})\rho_{A}(|i\rangle_{A})\right]
Binary file added contents/final-2022/single-choice.pdf
Binary file not shown.
Binary file added contents/final-2022/single-choice.synctex.gz
Binary file not shown.
6 changes: 3 additions & 3 deletions contents/final-2022/single-choice.tex
Original file line number Diff line number Diff line change
Expand Up @@ -165,13 +165,13 @@ \section{单项选择}
0 & 1
\end{pmatrix}
\end{align*}
计算 $\rho_{A}$ 的纠缠熵:
由于 $\rho_{A}$ 已经是对角阵, 所以对角线上元素即为特征值 $\lambda_{A,i}$. 计算 $\rho_{A}$ 的纠缠熵:
\begin{align*}
S(A) &=
-\text{Tr}[\rho_{A}\ln{\rho_{A}}]
= -\sum_{i}^{\uparrow,\downarrow}
(\langle i|_{A})\rho_{A}(|i\rangle_{A})
\ln{\left[(\langle i|_{A})\rho_{A}(|i\rangle_{A})\right]}\\
\lambda_{A,i}
\ln{\lambda_{A,i}}\\
&= -\left(\frac{1}{2}\ln{\frac{1}{2}} + \frac{1}{2}\ln{\frac{1}{2}}\right) = \boxed{\ln{2} = 1\text{ bit}}
\end{align*}}}

Expand Down
Binary file modified contents/homework.pdf
Binary file not shown.
Binary file modified contents/homework.synctex.gz
Binary file not shown.
2 changes: 1 addition & 1 deletion contents/homework/._wordcount_selection.tex
Original file line number Diff line number Diff line change
@@ -1 +1 @@
n_{i\uparrow}\langle
gray
Binary file added contents/homework/homework-1.pdf
Binary file not shown.
Binary file added contents/homework/homework-1.synctex.gz
Binary file not shown.
2 changes: 1 addition & 1 deletion contents/lecture-note/._wordcount_selection.tex
Original file line number Diff line number Diff line change
@@ -1 +1 @@
0\sigma^{2} & 1\sigma^{2} \\ 1\sigma^{2} & 0\sigma^{2}
\rho_{A}^{ii}
Binary file modified contents/lecture-note/section6.pdf
Binary file not shown.
Binary file modified contents/lecture-note/section6.synctex.gz
Binary file not shown.
112 changes: 112 additions & 0 deletions contents/lecture-note/section6.tex
Original file line number Diff line number Diff line change
Expand Up @@ -59,11 +59,123 @@ \subsubsection{双量子比特算符}

\subsubsection{双量子比特模型}

双量子比特 Heisenberg 模型哈密顿量为 $\begin{aligned}
H = \frac{J}{4}\vec{\sigma}_{A}\cdot\vec{\sigma}_{B}
\end{aligned}$, 将其写作矩阵形式:
\begin{align*}
H = \frac{J}{4}(\sigma^{11}+\sigma^{22}+\sigma^{33}) = \frac{J}{4} \begin{pmatrix}
1 & & & \\
& -1 & 2 & \\
& 2 & -1 & \\
& & & 1
\end{pmatrix}
\end{align*}

将其对角化以计算本征值, 并找到本征值对应的本征态, 结果为
\begin{align*}
E_{s} &= -\frac{3}{4}J,\quad |s\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle),\quad \text{自旋单态}\\
E_{t} &= \frac{J}{4},\quad \left\{\begin{aligned}
|t_{1}\rangle &= \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)\\
|t_{2}\rangle &= \frac{1}{\sqrt{2}}(|\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle)\\
|t_{3}\rangle &= \frac{1}{\sqrt{2}}(|\uparrow\uparrow\rangle - |\downarrow\downarrow\rangle)
\end{aligned}\right.,\quad \text{自旋三重态}
\end{align*}

\subsubsection{自旋单态}

\begin{align*}
|s\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) = \frac{1}{\sqrt{2}}\begin{pmatrix}
0 \\ 1 \\ -1 \\ 0
\end{pmatrix},\vec{\sigma}_{A} = (\sigma^{10},\sigma^{20},\sigma^{30}) = \left(\begin{pmatrix}
& & 1 & \\ & & & 1\\ 1 & & & \\ & 1 & &
\end{pmatrix}, \begin{pmatrix}
& & -i & \\ & & & -i\\ i & & & \\ & i & &
\end{pmatrix}, \begin{pmatrix}
1 & & & \\ & 1 & & \\ & & -1 & \\ & & & -1
\end{pmatrix}
\right)
\end{align*}

\subsubsection{纠缠熵}
双量子比特态 $|\psi\rangle$ 中量子比特 $A$ 的纠缠熵: $\begin{aligned}
S(A) = -\text{Tr}[\rho_{A}\ln{\rho_{A}}]
\end{aligned}$. 其中约化密度矩阵 $\begin{aligned}
\rho_{A} = \text{Tr}_{B}|\psi\rangle\langle\psi|
\end{aligned}$

更广义的 Renyi 纠缠熵 $\begin{aligned}
S^{(n)}(A) = \frac{1}{1-n}\ln{\text{Tr}\rho_{A}^{n}}
\end{aligned}$.

接下来介绍如何部分求迹.

\begin{enumerate}
\item 自旋单态 $\begin{aligned}
|\psi\rangle = |s\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)
\end{aligned}$. 其总密度矩阵为
\begin{align*}
\rho &= |s\rangle\langle s| = \frac{1}{2}\begin{pmatrix}
0 \\ 1 \\ -1 \\ 0
\end{pmatrix}\begin{pmatrix}
0 & 1 & -1 & 0
\end{pmatrix} = \frac{1}{2}\begin{pmatrix}
& & & \\
& 1 & -1 & \\
& -1 & 1 & \\
& & &
\end{pmatrix}\\
\rho_{A} &= \text{Tr}_{B}\rho = \frac{1}{2}\begin{pmatrix}
\text{Tr}\begin{pmatrix}
& \\ & 1
\end{pmatrix} & \text{Tr}\begin{pmatrix}
& \\ -1 &
\end{pmatrix} \\ \text{Tr}\begin{pmatrix}
& -1 \\ &
\end{pmatrix} & \text{Tr}\begin{pmatrix}
1 & \\ &
\end{pmatrix}
\end{pmatrix} = \frac{1}{2}\begin{pmatrix}
1 & 0 \\ 0 & 1
\end{pmatrix},\quad \lambda_{A}^{1} = \frac{1}{2}, \quad \lambda_{A}^{2} = \frac{1}{2}\\
S(A) &= -\text{Tr}\rho_{A}\ln{\rho_{A}} = - \sum_{i}\lambda_{A}^{i}\ln{\lambda_{A}^{i}} = -\left(\frac{1}{2}\ln{\frac{1}{2}} + \frac{1}{2}\ln{\frac{1}{2}}\right) = \ln{2}
\end{align*}
\item 乘积态 $\begin{aligned}
|\psi\rangle = \frac{1}{2}(|\uparrow\uparrow\rangle + |\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle + |\downarrow\downarrow\rangle)
\end{aligned}$. 总密度矩阵为
\begin{align*}
\rho &= |\psi\rangle\langle\psi| = \frac{1}{4}\begin{pmatrix}
1 \\ 1 \\ 1 \\ 1
\end{pmatrix}\begin{pmatrix}
1 & 1 & 1 & 1
\end{pmatrix} = \frac{1}{4}\begin{pmatrix}
1 & 1 & 1 & 1\\ 1 & 1 & 1 & 1\\ 1 & 1 & 1 & 1\\ 1 & 1 & 1 & 1
\end{pmatrix}\\
\rho_{A} &= \text{Tr}_{B}\rho = \frac{1}{4}\begin{pmatrix}
\text{Tr}\begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix} & \text{Tr}\begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix}\\
\text{Tr}\begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix} & \text{Tr}\begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix}
\end{pmatrix} = \frac{1}{4}\begin{pmatrix}
2 & 2 \\ 2 & 2
\end{pmatrix} = \frac{1}{2}\begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix},\quad \lambda_{A}^{1} = 0,\quad \lambda_{A}^{2} = 1\\
S(A) &= -\text{Tr}\rho_{A}\ln{\rho_{A}} = -\sum_{i}\lambda_{A}^{i}\ln{\lambda_{A}^{i}} = - (0\ln{0} + 1\ln{1}) = 0.
\end{align*}
\end{enumerate}

\subsubsection{互信息}
双量子比特体系, A 和 B 之间的互信息为

\begin{align*}
I(A:B) = S(A) + S(B) - S(A\cup B)
\end{align*}

\subsubsection{EPR 佯谬和 Bell 不等式}

Expand Down
Binary file modified main.pdf
Binary file not shown.
Binary file modified main.synctex.gz
Binary file not shown.

0 comments on commit 41f3b2a

Please sign in to comment.