Skip to content

Commit

Permalink
NEW: split fieldmap wf
Browse files Browse the repository at this point in the history
  • Loading branch information
NingAnMe committed Jan 11, 2024
1 parent bfa25c3 commit 6c8340b
Showing 1 changed file with 375 additions and 0 deletions.
375 changes: 375 additions & 0 deletions fmriprep/workflows/fieldmap.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,375 @@
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
#
# Copyright 2023 The NiPreps Developers <[email protected]>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# We support and encourage derived works from this project, please read
# about our expectations at
#
# https://www.nipreps.org/community/licensing/
#
"""
fMRIPrep base processing workflows
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autofunction:: init_fmriprep_wf
.. autofunction:: init_single_subject_wf
"""

import warnings

import bids
from nipype.interfaces import utility as niu
from nipype.pipeline import engine as pe
from niworkflows.utils.connections import listify

from .. import config


def init_single_subject_fieldmap_wf(subject_id: str):
"""
Organize the preprocessing pipeline for a single subject.
It collects and reports information about the subject, and prepares
sub-workflows to perform anatomical and functional preprocessing.
Anatomical preprocessing is performed in a single workflow, regardless of
the number of sessions.
Functional preprocessing is performed using a separate workflow for each
individual BOLD series.
Parameters
----------
subject_id : :obj:`str`
Subject label for this single-subject workflow.
Inputs
------
subjects_dir : :obj:`str`
FreeSurfer's ``$SUBJECTS_DIR``.
"""
from niworkflows.engine.workflows import LiterateWorkflow as Workflow
from niworkflows.interfaces.nilearn import NILEARN_VERSION
from niworkflows.utils.bids import collect_data

from fmriprep.workflows.bold.base import init_bold_wf

workflow = Workflow(name=f'sub_{subject_id}_wf')
workflow.__desc__ = """
Results included in this manuscript come from preprocessing
performed using *fMRIPrep* {fmriprep_ver}
(@fmriprep1; @fmriprep2; RRID:SCR_016216),
which is based on *Nipype* {nipype_ver}
(@nipype1; @nipype2; RRID:SCR_002502).
""".format(
fmriprep_ver=config.environment.version, nipype_ver=config.environment.nipype_version
)
workflow.__postdesc__ = """
Many internal operations of *fMRIPrep* use
*Nilearn* {nilearn_ver} [@nilearn, RRID:SCR_001362],
mostly within the functional processing workflow.
For more details of the pipeline, see [the section corresponding
to workflows in *fMRIPrep*'s documentation]\
(https://fmriprep.readthedocs.io/en/latest/workflows.html \
"FMRIPrep's documentation").
### Copyright Waiver
The above boilerplate text was automatically generated by fMRIPrep
with the express intention that users should copy and paste this
text into their manuscripts *unchanged*.
It is released under the [CC0]\
(https://creativecommons.org/publicdomain/zero/1.0/) license.
### References
""".format(
nilearn_ver=NILEARN_VERSION
)

subject_data = collect_data(
config.execution.layout,
subject_id,
task=config.execution.task_id,
echo=config.execution.echo_idx,
bids_filters=config.execution.bids_filters,
)[0]

if 'flair' in config.workflow.ignore:
subject_data['flair'] = []
if 't2w' in config.workflow.ignore:
subject_data['t2w'] = []

anat_only = config.workflow.anat_only
# Make sure we always go through these two checks
if not anat_only and not subject_data['bold']:
task_id = config.execution.task_id
raise RuntimeError(
"No BOLD images found for participant {} and task {}. "
"All workflows require BOLD images.".format(
subject_id, task_id if task_id else '<all>'
)
)

bold_runs = [
sorted(
listify(run),
key=lambda file: config.execution.layout.get_metadata(file).get('EchoTime', 0),
)
for run in subject_data['bold']
]

if subject_data['roi']:
warnings.warn(
f"Lesion mask {subject_data['roi']} found. "
"Future versions of fMRIPrep will use alternative conventions. "
"Please refer to the documentation before upgrading.",
FutureWarning,
)

spaces = config.workflow.spaces

anatomical_cache = {}
if config.execution.derivatives:
from smriprep.utils.bids import collect_derivatives as collect_anat_derivatives

std_spaces = spaces.get_spaces(nonstandard=False, dim=(3,))
std_spaces.append("fsnative")
for deriv_dir in config.execution.derivatives:
anatomical_cache.update(
collect_anat_derivatives(
derivatives_dir=deriv_dir,
subject_id=subject_id,
std_spaces=std_spaces,
)
)

inputnode_fields = [
't1w_preproc',
't1w_mask',
't1w_dseg',
't1w_tpms',
'subjects_dir',
'subject_id',
'fsnative2t1w_xfm',
]
inputnode = pe.Node(niu.IdentityInterface(fields=inputnode_fields), name='inputnode')

# bids_root = str(config.execution.bids_dir)
fmriprep_dir = str(config.execution.fmriprep_dir)
omp_nthreads = config.nipype.omp_nthreads

fmap_estimators, estimator_map = map_fieldmap_estimation(
layout=config.execution.layout,
subject_id=subject_id,
bold_data=bold_runs,
ignore_fieldmaps="fieldmaps" in config.workflow.ignore,
use_syn=config.workflow.use_syn_sdc,
force_syn=config.workflow.force_syn,
filters=config.execution.get().get('bids_filters', {}).get('fmap'),
)

if fmap_estimators:
config.loggers.workflow.info(
"B0 field inhomogeneity map will be estimated with the following "
f"{len(fmap_estimators)} estimator(s): "
f"{[e.method for e in fmap_estimators]}."
)

from sdcflows import fieldmaps as fm
from sdcflows.workflows.base import init_fmap_preproc_wf

fmap_wf = init_fmap_preproc_wf(
debug="fieldmaps" in config.execution.debug,
estimators=fmap_estimators,
omp_nthreads=omp_nthreads,
output_dir=fmriprep_dir,
subject=subject_id,
)
fmap_wf.__desc__ = f"""
Preprocessing of B<sub>0</sub> inhomogeneity mappings
: A total of {len(fmap_estimators)} fieldmaps were found available within the input
BIDS structure for this particular subject.
"""

# Overwrite ``out_path_base`` of sdcflows's DataSinks
for node in fmap_wf.list_node_names():
if node.split(".")[-1].startswith("ds_"):
fmap_wf.get_node(node).interface.out_path_base = ""

for estimator in fmap_estimators:
config.loggers.workflow.info(
f"""\
Setting-up fieldmap "{estimator.bids_id}" ({estimator.method}) with \
<{', '.join(s.path.name for s in estimator.sources)}>"""
)

# Mapped and phasediff can be connected internally by SDCFlows
if estimator.method in (fm.EstimatorType.MAPPED, fm.EstimatorType.PHASEDIFF):
continue

suffices = [s.suffix for s in estimator.sources]

if estimator.method == fm.EstimatorType.PEPOLAR:
if len(suffices) == 2 and all(suf in ("epi", "bold", "sbref") for suf in suffices):
wf_inputs = getattr(fmap_wf.inputs, f"in_{estimator.bids_id}")
wf_inputs.in_data = [str(s.path) for s in estimator.sources]
wf_inputs.metadata = [s.metadata for s in estimator.sources]
else:
raise NotImplementedError("Sophisticated PEPOLAR schemes are unsupported.")

# Append the functional section to the existing anatomical excerpt
# That way we do not need to stream down the number of bold datasets
func_pre_desc = """
Functional data preprocessing
: For each of the {num_bold} BOLD runs found per subject (across all
tasks and sessions), the following preprocessing was performed.
""".format(
num_bold=len(bold_runs)
)

for bold_series in bold_runs:
bold_file = bold_series[0]
fieldmap_id = estimator_map.get(bold_file)

functional_cache = {}
if config.execution.derivatives:
from fmriprep.utils.bids import collect_derivatives, extract_entities

entities = extract_entities(bold_series)

for deriv_dir in config.execution.derivatives:
functional_cache.update(
collect_derivatives(
derivatives_dir=deriv_dir,
entities=entities,
fieldmap_id=fieldmap_id,
)
)

return clean_datasinks(workflow)


def map_fieldmap_estimation(
layout: bids.BIDSLayout,
subject_id: str,
bold_data: list[list[str]],
ignore_fieldmaps: bool,
use_syn: bool | str,
force_syn: bool,
filters: dict | None,
) -> tuple[list, dict]:
if not any((not ignore_fieldmaps, use_syn, force_syn)):
return [], {}

from sdcflows import fieldmaps as fm
from sdcflows.utils.wrangler import find_estimators

# In the case where fieldmaps are ignored and `--use-syn-sdc` is requested,
# SDCFlows `find_estimators` still receives a full layout (which includes the fmap modality)
# and will not calculate fmapless schemes.
# Similarly, if fieldmaps are ignored and `--force-syn` is requested,
# `fmapless` should be set to True to ensure BOLD targets are found to be corrected.
fmap_estimators = find_estimators(
layout=layout,
subject=subject_id,
fmapless=bool(use_syn) or ignore_fieldmaps and force_syn,
force_fmapless=force_syn or ignore_fieldmaps and use_syn,
bids_filters=filters,
)

if not fmap_estimators:
if use_syn:
message = (
"Fieldmap-less (SyN) estimation was requested, but PhaseEncodingDirection "
"information appears to be absent."
)
config.loggers.workflow.error(message)
if use_syn == "error":
raise ValueError(message)
return [], {}

if ignore_fieldmaps and any(f.method == fm.EstimatorType.ANAT for f in fmap_estimators):
config.loggers.workflow.info(
'Option "--ignore fieldmaps" was set, but either "--use-syn-sdc" '
'or "--force-syn" were given, so fieldmap-less estimation will be executed.'
)
fmap_estimators = [f for f in fmap_estimators if f.method == fm.EstimatorType.ANAT]

# Pare down estimators to those that are actually used
# If fmap_estimators == [], all loops/comprehensions terminate immediately
all_ids = {fmap.bids_id for fmap in fmap_estimators}
bold_files = (bold_series[0] for bold_series in bold_data)

all_estimators = {
bold_file: [fmap_id for fmap_id in get_estimator(layout, bold_file) if fmap_id in all_ids]
for bold_file in bold_files
}

for bold_file, estimator_key in all_estimators.items():
if len(estimator_key) > 1:
config.loggers.workflow.warning(
f"Several fieldmaps <{', '.join(estimator_key)}> are "
f"'IntendedFor' <{bold_file}>, using {estimator_key[0]}"
)
estimator_key[1:] = []

# Final, 1-1 map, dropping uncorrected BOLD
estimator_map = {
bold_file: estimator_key[0]
for bold_file, estimator_key in all_estimators.items()
if estimator_key
}

fmap_estimators = [f for f in fmap_estimators if f.bids_id in estimator_map.values()]

return fmap_estimators, estimator_map


def _prefix(subid):
return subid if subid.startswith('sub-') else f'sub-{subid}'


def clean_datasinks(workflow: pe.Workflow) -> pe.Workflow:
# Overwrite ``out_path_base`` of smriprep's DataSinks
for node in workflow.list_node_names():
if node.split('.')[-1].startswith('ds_'):
workflow.get_node(node).interface.out_path_base = ""
return workflow


def get_estimator(layout, fname):
field_source = layout.get_metadata(fname).get("B0FieldSource")
if isinstance(field_source, str):
field_source = (field_source,)

if field_source is None:
import re
from pathlib import Path

from sdcflows.fieldmaps import get_identifier

# Fallback to IntendedFor
intended_rel = re.sub(r"^sub-[a-zA-Z0-9]*/", "", str(Path(fname).relative_to(layout.root)))
field_source = get_identifier(intended_rel)

return field_source

0 comments on commit 6c8340b

Please sign in to comment.