Skip to content

An easy-to-use, fast, and easily integrable tool for evaluating audio LLM

License

Notifications You must be signed in to change notification settings

OpenBMB/UltraEval-Audio

Repository files navigation

assets/logo.png

中文 | English | 💬discord

Overview

🚀超凡体验,尽在UltraEval-Audio🚀

UltraEval-Audio——全球首个同时支持语音理解和语音生成评估的开源框架,专为语音大模型评估打造,集合了34项权威Benmark,覆盖语音、声音、医疗及音乐四大领域,支持十种语言,涵盖十二类任务。选择UltraEval-Audio,您将体验到前所未有的便捷与高效:

  • 一键式基准管理 📥:告别繁琐的手动下载与数据处理,UltraEval-Audio为您自动化完成这一切,轻松获取所需基准测试数据。
  • 内置评估利器 ⚙️:无需再四处搜寻评估工具,UltraEval-Audio内置八种常用的评估方法(如WER、WER-ZH、BLEU、G-Eval),无论是基于规则还是模型驱动,都能满足您的需求。
  • 功能强大,灵活易用 🛠️:支持预览测试、随机样本、错误重试、断点重跑等功能,确保评估过程灵活可控,提升效率与准确性。
  • 无缝集成自定义数据集 💼:不仅支持公开benchmark,还提供强大的自定义数据集功能,让您在各种工程场景下也能迅速应用。
  • 轻松对接现有系统 🔗:具备优秀的扩展性和标准化设计,即使您已拥有一套完善的评估体系,UltraEval-Audio也能无缝对接,简化项目管理流程,输出结果统一规范。

Leaderboard

Audio Understanding LLM: Speech + Text → Text

Audio Generation LLM: Speech → Speech

Audio Understanding LLM Leaderboard

Rank Model ASR AST
🏅 MiniCPM-o 2.6 96 38
🥈 Gemini-1.5-Pro 94 35
🥉 qwen2-audio-instruction 94 31
4 GPT-4o-Realtime 92 26
5 Gemini-1.5-Flash 49 21
6 Qwen-Audio-Chat 3 12

Audio Generation LLM Leaderboard

Rank Model Semantic Acoustic AudioArena
🏅 GPT-4o-Realtime 67 84 1200
🥈 MiniCPM-o 2.6 48 80 1131
🥉 GLM-4-Voice 42 82 1035
4 Mini-Omni 16 64 897
5 Llama-Omni 29 54 875
6 Moshi 27 68 865

详细模型指标见leaderboard.md

图片 1 描述 图片 2 描述

支持数据集

assets/dataset_distribute.png

更新日志🔥

  • [2025/01/13] release v1.0.0

快速上手

环境准备

git clone https://github.com/OpenBMB/UltraEval-Audio.git
cd UltraEval-Audio
conda create -n aduioeval python=3.10 -y
conda activate aduioeval
pip install -r requirments.txt

运行示例

export PYTHONPATH=$PWD:$PYTHONPATH

# 针对部分地区可能需要加速下载 需要设置:export HF_ENDPOINT=https://hf-mirror.com

# 测试GPT-4o-Realtime语音理解能力
export OPENAI_API_KEY=$your-key
python audio_evals/main.py --dataset sample --model gpt4o_audio

# 测试GPT-4o-Realtime语音生成能力
export OPENAI_API_KEY=$your-key
python audio_evals/main.py --dataset llama-questions-s2t --model gpt4o_speech

# 测试gemini-1.5-pro语音理解能力
export GOOGLE_API_KEY=$your-key
python audio_evals/main.py --dataset sample --model gemini-pro


# 测试qwen2-audio-offline语音理解能力
pip install -r requirments-offline-model.txt
CUDA_VISIBLE_DEVICES=0 python audio_evals/main.py --dataset sample --model qwen2-audio-chat

遇到报错可以先看常见问题

res

评测完毕,结果文件如下:

- res
    |-- $model-name
        |-- $dataset
            |-- $time.jsonl
            |-- $time-overview.jsonl

Usage

assets/img_1.png

评测命令:

python audio_evals/main.py --dataset <dataset_name> --model <model_name>

数据集选择

--dataset 指定要评测的数据集,支持的数据集如下:

  • speech-chatbot-alpaca-eval
  • llama-questions
  • speech-web-questions
  • speech-triviaqa
  • tedlium-release1
  • tedlium-release2
  • tedlium-release3
  • catdog
  • audiocaps
  • covost2-en-ar
  • covost2-en-ca
  • covost2-en-cy
  • covost2-en-de
  • covost2-en-et
  • covost2-en-fa
  • covost2-en-id
  • covost2-en-ja
  • covost2-en-lv
  • covost2-en-mn
  • covost2-en-sl
  • covost2-en-sv
  • covost2-en-ta
  • covost2-en-tr
  • covost2-en-zh
  • covost2-zh-en
  • covost2-it-en
  • covost2-fr-en
  • covost2-es-en
  • covost2-de-en
  • GTZAN
  • TESS
  • nsynth
  • meld-emo
  • meld-sentiment
  • clotho-aqa
  • ravdess-emo
  • ravdess-gender
  • COVID-recognizer
  • respiratory-crackles
  • respiratory-wheezes
  • KeSpeech
  • audio-MNIST
  • librispeech-test-clean
  • librispeech-dev-clean
  • librispeech-test-other
  • librispeech-dev-other
  • mls_dutch
  • mls_french
  • mls_german
  • mls_italian
  • mls_polish
  • mls_portuguese
  • mls_spanish
  • heartbeat_sound
  • vocalsound
  • fleurs-zh
  • voxceleb1
  • voxceleb2
  • chord-recognition
  • wavcaps-audioset
  • wavcaps-freesound
  • wavcaps-soundbible
  • air-foundation
  • air-chat
  • desed
  • peoples-speech
  • WenetSpeech-test-meeting
  • WenetSpeech-test-net
  • gigaspeech
  • aishell-1
  • cv-15-en
  • cv-15-zh
  • cv-15-fr
  • cv-15-yue

数据集详细说明

<dataset_name> name task domain metric
speech-chatbot-alpaca-eval speech-chatbot-alpaca-eval SpeechQA speech2speech GPT-score
llama-questions llama-questions SpeechQA speech2speech acc
speech-web-questions speech-web-questions SpeechQA speech2speech acc
speech-triviaqa speech-triviaqa SpeechQA speech2speech acc
tedlium-* tedlium ASR(Automatic Speech Recognition) speech wer
clotho-aqa ClothoAQA AQA(AudioQA) sound acc
catdog catdog AQA sound acc
mls-* multilingual_librispeech ASR speech wer
KeSpeech KeSpeech ASR speech cer
librispeech-* librispeech ASR speech wer
fleurs-* FLEURS ASR speech wer
aisheel1 AISHELL-1 ASR speech wer
WenetSpeech-* WenetSpeech ASR speech wer
covost2-* covost2 STT(Speech Text Translation) speech BLEU
GTZAN GTZAN MQA(MusicQA) music acc
TESS TESS EMO(emotional recognition) speech acc
nsynth nsynth MQA music acc
meld-emo meld EMO speech acc
meld-sentiment meld SEN(sentiment recognition) speech acc
ravdess-emo ravdess EMO speech acc
ravdess-gender ravdess GEND(gender recognition) speech acc
COVID-recognizer COVID MedicineCls medicine acc
respiratory-* respiratory MedicineCls medicine acc
audio-MNIST audio-MNIST AQA speech acc
heartbeat_sound heartbeat MedicineCls medicine acc
vocalsound vocalsound MedicineCls medicine acc
voxceleb* voxceleb GEND speech acc
chord-recognition chord MQA music acc
wavcaps-* wavcaps AC(AudioCaption) sound acc
air-foundation AIR-BENCH AC,GEND,MQA,EMO sound,music,speech acc
air-chat AIR-BENCH AC,GEND,MQA,EMO sound,music,speech GPT4-score
desed desed AQA sound acc
peoples-speech peoples-speech ASR speech wer
gigaspeech gigaspeech ASR speech wer
cv-15-* common voice 15 ASR speech wer

构造你自己的数据集: docs/how add a dataset.md

模型选择

--model 指定要评测的模型,支持的模型如下:

  • gpt4o_audio:使用 gpt-4o-realtime-preview-2024-10-01 的音频转文本模态模型。
  • gpt4o_speech:使用 gpt-4o-realtime-preview-2024-10-01 的音频转语音模态模型。
  • gpt4o_audio_ms:使用 gpt-4o-realtime-preview-2024-10-01(在 AZURE 上)的音频转文本模态模型。
  • gpt4o_speech_ms:使用 gpt-4o-realtime-preview-2024-10-01(在 AZURE 上)的音频转语音模态模型。
  • gpt4o_speech:使用 Ggpt-4o-realtime-preview-2024-10-01 的音频转语音模态模型。
  • gemini-pro:使用 Gemini Pro 模型。
  • gemini-1.5-pro:使用 Gemini 1.5 Pro 模型。
  • gemini-1.5-flash:使用 Gemini 1.5 Flash 模型。
  • gemini-2.0-flash-exp:使用 Gemini 2.0 Flash 模型。
  • qwen-audio:使用 qwen-audio-chat API 模型。
  • qwen2-audio-offline:使用 Qwen2-Audio-7B 离线模型。
  • qwen2-audio-chat:使用 Qwen2-Audio-7B-Instruct 离线模型。
  • qwen-audio-chat-offline:使用 Qwen-Audio-Chat 离线模型。
  • qwen-audio-pretrain-offline:使用 Qwen-Audio 离线模型。
  • ultravox:使用 ultravox-v0_4 离线模型。

speech2speech 模型(glm4voice,mini-omni...)稍后支持。

评测你自己的模型 docs/how eval your model.md

致谢

我们参考了evalsregistry代码

联系我们

如果你有任何建议或疑问可以提issue或者加入discord群组: https://discord.gg/PHGy66QP

About

An easy-to-use, fast, and easily integrable tool for evaluating audio LLM

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages