Skip to content

Commit

Permalink
typos rouen's slides
Browse files Browse the repository at this point in the history
  • Loading branch information
jchiquet committed Jun 21, 2024
1 parent a9e2bd9 commit b8f51c2
Show file tree
Hide file tree
Showing 3 changed files with 10 additions and 10 deletions.
6 changes: 3 additions & 3 deletions talks/202406-rouen/pln-background.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -161,7 +161,7 @@ Do as if $\hat{\theta}^{\text{ve}}$ was a MLE and $\bar{J}_n$ the log-likelihood

### Variational Fisher Information

The Fisher information matrix is given by (from the Hessian of $J$) by
For standard PLN, the Fisher information matrix is given by (from the Hessian of $J$) by

$$I_n(\hat{\theta}^{\text{ve}}) = \begin{pmatrix}
\frac{1}{n}(\mathbf{I}_p \otimes
Expand All @@ -170,7 +170,7 @@ $$I_n(\hat{\theta}^{\text{ve}}) = \begin{pmatrix}
\mathbf{\Omega}^{-1}
\end{pmatrix}$$

and can be inverted blockwise to estimate $\mathbb{V}(\hat{\theta})$.
where $A_{ij} = \exp{M_{ij} + 1/2 S_{ij}}$.

### Confidence intervals and coverage

Expand All @@ -186,7 +186,7 @@ $B_{kj} = \hat{B}_{kj} \pm \frac{q_{1 - \alpha/2}}{\sqrt{n}} \sqrt{\hat{\mathbb

### Theorem [@Westling2015]

Under additional regularity conditions (still satisfied for example when $\theta$ and $\psi_i$ are restricted to compact sets), we have
Under additional regularity conditions (satisfied when $\theta$ and $\psi_i$ are restricted to compact sets), we have
$$
\sqrt{n}(\hat{\theta}^{\text{ve}} - \bar{\theta}) \xrightarrow[]{d} \mathcal{N}(0, V(\bar{\theta})), \quad \text{where } V(\theta) = C(\theta)^{-1} D(\theta) C(\theta)^{-1}
$$
Expand Down
10 changes: 5 additions & 5 deletions talks/202406-rouen/slides.html
Original file line number Diff line number Diff line change
Expand Up @@ -1688,14 +1688,14 @@ <h3 id="theorem-westling2015">Theorem <span class="citation" data-cites="Westlin
<h2>Variance: naïve approach</h2>
<p>Do as if <span class="math inline">\(\hat{\theta}^{\text{ve}}\)</span> was a MLE and <span class="math inline">\(\bar{J}_n\)</span> the log-likelihood.</p>
<h3 id="variational-fisher-information">Variational Fisher Information</h3>
<p>The Fisher information matrix is given by (from the Hessian of <span class="math inline">\(J\)</span>) by</p>
<p>For standard PLN, the Fisher information matrix is given by (from the Hessian of <span class="math inline">\(J\)</span>) by</p>
<p><span class="math display">\[I_n(\hat{\theta}^{\text{ve}}) = \begin{pmatrix}
\frac{1}{n}(\mathbf{I}_p \otimes
\mathbf{X}^\top)\mathrm{diag}(\mathrm{vec}(\mathbf{A}))(\mathbf{I}_p \otimes \mathbf{X}) &amp; \mathbf{0} \\
\mathbf{0} &amp; \frac12\mathbf{\Omega}^{-1} \otimes
\mathbf{\Omega}^{-1}
\end{pmatrix}\]</span></p>
<p>and can be inverted blockwise to estimate <span class="math inline">\(\mathbb{V}(\hat{\theta})\)</span>.</p>
<p>where <span class="math inline">\(A_{ij} = \exp{M_{ij} + 1/2 S_{ij}}\)</span>.</p>
<h3 id="confidence-intervals-and-coverage">Confidence intervals and coverage</h3>
<p><span class="math inline">\(\hat{\mathbb{V}}(B_{kj}) = [n (\mathbf{X}^\top \mathrm{diag}(\mathrm{vec}(\hat{A}_{.j})) \mathbf{X})^{-1}]_{kk}, \qquad \hat{\mathbb{V}}(\Omega_{kl}) = 2\hat{\Omega}_{kk}\hat{\Omega}_{ll}\)</span></p>
<p>The confidence intervals at level <span class="math inline">\(\alpha\)</span> are given by</p>
Expand All @@ -1704,7 +1704,7 @@ <h3 id="confidence-intervals-and-coverage">Confidence intervals and coverage</h3
<section id="variance-sandwich-estimator" class="slide level2">
<h2>Variance : sandwich estimator</h2>
<h3 id="theorem-westling2015-1">Theorem <span class="citation" data-cites="Westling2015">(<a href="#/references" role="doc-biblioref" onclick>Westling and McCormick 2015</a>)</span></h3>
<p>Under additional regularity conditions (still satisfied for example when <span class="math inline">\(\theta\)</span> and <span class="math inline">\(\psi_i\)</span> are restricted to compact sets), we have <span class="math display">\[
<p>Under additional regularity conditions (satisfied when <span class="math inline">\(\theta\)</span> and <span class="math inline">\(\psi_i\)</span> are restricted to compact sets), we have <span class="math display">\[
\sqrt{n}(\hat{\theta}^{\text{ve}} - \bar{\theta}) \xrightarrow[]{d} \mathcal{N}(0, V(\bar{\theta})), \quad \text{where } V(\theta) = C(\theta)^{-1} D(\theta) C(\theta)^{-1}
\]</span> for <span class="math inline">\(C(\theta) = \mathbb{E}[\nabla_{\theta\theta} \bar{J}(\theta) ]\)</span> and <span class="math inline">\(D(\theta) = \mathbb{E}\left[(\nabla_{\theta} \bar{J}(\theta)) (\nabla_{\theta} \bar{J}(\theta)^\intercal \right]\)</span></p>
<h4 id="practical-computations-chain-rule">Practical computations (chain rule)</h4>
Expand All @@ -1722,7 +1722,7 @@ <h4 id="caveat">Caveat</h4>
</section></section>
<section>
<section id="handling-zeros-in-multivariate-count-tables" class="title-slide slide level1 center">
<h1><br> <br> Handling <br> zeros in <br> multivariate <br> count tables</h1>
<h1><br> Handling zeros in <br> multivariate count tables</h1>

</section>
<section id="a-zero-inflated-pln" class="slide level2">
Expand Down Expand Up @@ -1829,7 +1829,7 @@ <h4 id="more-accurate-variational-approximation">More accurate variational appro
<p><span class="math display">\[\begin{aligned}
q_{\psi_i}(\boldsymbol Z_i, \boldsymbol W_i) &amp; = q_{\psi_i}(\boldsymbol Z_i | \boldsymbol W_i) q_{\psi_i}(\boldsymbol W_i) \\
&amp; = \otimes_{j = 1}^p \mathcal{N}(\boldsymbol x_i^\top \mathbf{B}_j, \Sigma_{jj})^{W_{ij}} \mathcal{N}(M_{ij},
S_{ij}^2)^{1-W_{ij}} W_{ij}, \quad W_{ij} \sim^\text{indep} \mathcal{B}\left(\rho_{ij}\right)\end{aligned}.\]</span></p>
S_{ij}^2)^{1-W_{ij}}, \quad W_{ij} \sim^\text{indep} \mathcal{B}\left(\rho_{ij}\right)\end{aligned}.\]</span></p>
<h4 id="counterpart">Counterpart</h4>
<p>We loose close-forms in M Step of VEM for <span class="math inline">\(\hat{\mathbf{B}}\)</span> and <span class="math inline">\(\hat{\mathbf{\Sigma}}\)</span> in the corresponding ELBO…</p>
</section>
Expand Down
4 changes: 2 additions & 2 deletions talks/202406-rouen/zi-pln.qmd
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@

# <br/> <br/> Handling <br/> zeros in <br/> multivariate <br/> count tables
# <br/> Handling zeros in <br/> multivariate count tables

## A zero-inflated PLN

Expand Down Expand Up @@ -135,7 +135,7 @@ $\rightsquigarrow$ Only an approximation of $Z_{ij} | Y_{ij}, W_{ij} = 0$ is nee
$$\begin{aligned}
q_{\psi_i}(\boldsymbol Z_i, \boldsymbol W_i) & = q_{\psi_i}(\boldsymbol Z_i | \boldsymbol W_i) q_{\psi_i}(\boldsymbol W_i) \\
& = \otimes_{j = 1}^p \mathcal{N}(\boldsymbol x_i^\top \mathbf{B}_j, \Sigma_{jj})^{W_{ij}} \mathcal{N}(M_{ij},
S_{ij}^2)^{1-W_{ij}} W_{ij}, \quad W_{ij} \sim^\text{indep} \mathcal{B}\left(\rho_{ij}\right)\end{aligned}.$$
S_{ij}^2)^{1-W_{ij}}, \quad W_{ij} \sim^\text{indep} \mathcal{B}\left(\rho_{ij}\right)\end{aligned}.$$

#### Counterpart

Expand Down

0 comments on commit b8f51c2

Please sign in to comment.