Skip to content

Commit

Permalink
Update website to output generated at 0cbd070
Browse files Browse the repository at this point in the history
  • Loading branch information
cr-xu committed Feb 2, 2024
1 parent ef48dc6 commit 71c232a
Show file tree
Hide file tree
Showing 3 changed files with 2 additions and 2 deletions.
Binary file modified img/random_policy.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified img/trained_meta_policy.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
4 changes: 2 additions & 2 deletions index.html
Original file line number Diff line number Diff line change
Expand Up @@ -7985,7 +7985,7 @@ <h2 style="color: #b51f2a">Evaluation of random policy 💻</h2>
<li>The policy $\varphi_0^0$ starts as random and adapts for 500 steps (and show the progress every 50 steps).</li>
</ul>
<p>Run the following code to train the task policy $\varphi_0^0$ for 500 steps:</p>
<p><code>python test.py --experiment-name tutorial --experiment-type adapt_from_scratch --num-batches=500 --plot-interval=50 --task-ids 0</code></p>
<p><code>python test.py --experiment-name tutorial --experiment-type adapt_from_scratch --num-batches 500 --plot-interval 50 --task-ids 0</code></p>
<p>Once it has run, you can look at the adaptation progress by running:</p>
<p><code>python read_out_train.py --experiment-name tutorial --experiment-type adapt_from_scratch</code></p>
<p>You can run now several tasks.</p>
Expand Down Expand Up @@ -8036,7 +8036,7 @@ <h3 style="color: #b51f2a">Training</h3>
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
<h3 style="color: #b51f2a">Evaluation of the trained meta-policy 💻</h3>
<p>We will now use a pre-trained policy located in <code>awake/pretrained_policy.th</code> and evalulate it against a certain number of fixed tasks.</p>
<p><code>python test.py --experiment-name tutorial --experiment-type test_meta --use-meta-policy --policy awake/pretrained_policy.th --num-batches=500 --plot-interval=50 --task-ids 0 1 2 3 4</code></p>
<p><code>python test.py --experiment-name tutorial --experiment-type test_meta --use-meta-policy --policy awake/pretrained_policy.th --num-batches 500 --plot-interval 50 --task-ids 0 1 2 3 4</code></p>
<ul>
<li>use <code>--task-ids 0 1 2 3 4</code> to run evaluation against all 5 tasks, or e.g. <code>--task-ids 0</code> to evaluate only for task 0.</li>
<li>here we set the flag <code>--use-meta-policy</code> so that it uses the pre-trained policy.</li>
Expand Down

0 comments on commit 71c232a

Please sign in to comment.