-
Notifications
You must be signed in to change notification settings - Fork 39
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 90e95e0
Showing
18 changed files
with
3,770 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,141 @@ | ||
# Byte-compiled / optimized / DLL files | ||
__pycache__/ | ||
*.py[cod] | ||
*$py.class | ||
|
||
# C extensions | ||
*.so | ||
|
||
# Distribution / packaging | ||
.Python | ||
build/ | ||
develop-eggs/ | ||
dist/ | ||
downloads/ | ||
eggs/ | ||
.eggs/ | ||
lib/ | ||
lib64/ | ||
parts/ | ||
sdist/ | ||
var/ | ||
wheels/ | ||
share/python-wheels/ | ||
*.egg-info/ | ||
.installed.cfg | ||
*.egg | ||
MANIFEST | ||
|
||
# PyInstaller | ||
# Usually these files are written by a python script from a template | ||
# before PyInstaller builds the exe, so as to inject date/other infos into it. | ||
*.manifest | ||
*.spec | ||
|
||
# Installer logs | ||
pip-log.txt | ||
pip-delete-this-directory.txt | ||
|
||
# Unit test / coverage reports | ||
htmlcov/ | ||
.tox/ | ||
.nox/ | ||
.coverage | ||
.coverage.* | ||
.cache | ||
nosetests.xml | ||
coverage.xml | ||
*.cover | ||
*.py,cover | ||
.hypothesis/ | ||
.pytest_cache/ | ||
cover/ | ||
|
||
# Translations | ||
*.mo | ||
*.pot | ||
|
||
# Django stuff: | ||
*.log | ||
local_settings.py | ||
db.sqlite3 | ||
db.sqlite3-journal | ||
|
||
# Flask stuff: | ||
instance/ | ||
.webassets-cache | ||
|
||
# Scrapy stuff: | ||
.scrapy | ||
|
||
# Sphinx documentation | ||
docs/_build/ | ||
|
||
# PyBuilder | ||
.pybuilder/ | ||
target/ | ||
|
||
# Jupyter Notebook | ||
.ipynb_checkpoints | ||
|
||
# IPython | ||
profile_default/ | ||
ipython_config.py | ||
|
||
# pyenv | ||
# For a library or package, you might want to ignore these files since the code is | ||
# intended to run in multiple environments; otherwise, check them in: | ||
# .python-version | ||
|
||
# pipenv | ||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. | ||
# However, in case of collaboration, if having platform-specific dependencies or dependencies | ||
# having no cross-platform support, pipenv may install dependencies that don't work, or not | ||
# install all needed dependencies. | ||
#Pipfile.lock | ||
|
||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow | ||
__pypackages__/ | ||
|
||
# Celery stuff | ||
celerybeat-schedule | ||
celerybeat.pid | ||
|
||
# SageMath parsed files | ||
*.sage.py | ||
|
||
# Environments | ||
.env | ||
.venv | ||
env/ | ||
venv/ | ||
ENV/ | ||
env.bak/ | ||
venv.bak/ | ||
|
||
# Spyder project settings | ||
.spyderproject | ||
.spyproject | ||
|
||
# Rope project settings | ||
.ropeproject | ||
|
||
# mkdocs documentation | ||
/site | ||
|
||
# mypy | ||
.mypy_cache/ | ||
.dmypy.json | ||
dmypy.json | ||
|
||
# Pyre type checker | ||
.pyre/ | ||
|
||
# pytype static type analyzer | ||
.pytype/ | ||
|
||
# Cython debug symbols | ||
cython_debug/ | ||
|
||
# ignore tf models | ||
models/* |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,168 @@ | ||
import numpy as np | ||
import tensorflow as tf | ||
|
||
|
||
def tflite_inference(inputs, model_path, dtype=np.float32): | ||
|
||
if not isinstance(inputs, (list, tuple)): | ||
inputs = (inputs,) | ||
|
||
# Load the TFLite model and allocate tensors. | ||
interpreter = tf.lite.Interpreter(model_path=model_path) | ||
interpreter.allocate_tensors() | ||
|
||
# Get input and output tensors. | ||
input_details = interpreter.get_input_details() | ||
output_details = interpreter.get_output_details() | ||
|
||
# Test the model on random input data. | ||
for inp, inp_det in zip(inputs, input_details): | ||
interpreter.set_tensor(inp_det["index"], np.array(inp[None, ...], dtype=dtype)) | ||
|
||
interpreter.invoke() | ||
|
||
# The function `get_tensor()` returns a copy of the tensor data. | ||
# Use `tensor()` in order to get a pointer to the tensor. | ||
outputs = [interpreter.get_tensor(out["index"]) for out in output_details] | ||
|
||
return outputs | ||
|
||
|
||
def landmarks_to_detections(landmarks): | ||
""" | ||
landmarks: (3, N) landmarks | ||
""" | ||
x_min = np.amin(landmarks[0, :]) | ||
x_max = np.amax(landmarks[0, :]) | ||
y_min = np.amin(landmarks[1, :]) | ||
y_max = np.amax(landmarks[1, :]) | ||
|
||
bbox = dict() | ||
bbox["x_min"] = x_min | ||
bbox["y_min"] = y_min | ||
bbox["width"] = x_max - x_min | ||
bbox["height"] = y_max - y_min | ||
|
||
detections = dict() | ||
detections["bboxs"] = bbox | ||
detections["keypoints"] = landmarks[:2, :] | ||
|
||
return detections | ||
|
||
|
||
def detections_to_rect( | ||
detections, | ||
image_size, | ||
rotation_vector_start_end=None, | ||
rotation_vector_target_angle=0, | ||
): | ||
|
||
keypoints = detections["keypoints"] | ||
x_min = np.amin(keypoints[0, :]) | ||
x_max = np.amax(keypoints[0, :]) | ||
y_min = np.amin(keypoints[1, :]) | ||
y_max = np.amax(keypoints[1, :]) | ||
|
||
rect = dict() | ||
rect["x_center"] = (x_min + x_max) / 2 | ||
rect["y_center"] = (y_min + y_max) / 2 | ||
rect["width"] = x_max - x_min | ||
rect["height"] = y_max - y_min | ||
|
||
if rotation_vector_start_end is not None: | ||
rect["rotation"] = compute_rotation( | ||
detections, | ||
image_size, | ||
rotation_vector_start_end, | ||
rotation_vector_target_angle, | ||
) | ||
else: | ||
rect["rotation"] = None | ||
|
||
return rect | ||
|
||
|
||
def compute_rotation(detections, image_size, rotation_vector_start_end, target_angle): | ||
|
||
keypoints = detections["keypoints"] | ||
|
||
x0 = keypoints[0, rotation_vector_start_end[0]] * image_size[0] | ||
y0 = keypoints[1, rotation_vector_start_end[0]] * image_size[1] | ||
x1 = keypoints[0, rotation_vector_start_end[1]] * image_size[0] | ||
y1 = keypoints[1, rotation_vector_start_end[1]] * image_size[1] | ||
|
||
rotation = normalize_radians(target_angle - np.arctan2(-(y1 - y0), x1 - x0)) | ||
|
||
return rotation | ||
|
||
|
||
def normalize_radians(angle): | ||
return angle - 2 * np.pi * np.floor((angle - (-np.pi)) / (2 * np.pi)) | ||
|
||
|
||
def transform_rect( | ||
rect, | ||
image_size, | ||
scale_x=1, | ||
scale_y=1, | ||
shift_x=0, | ||
shift_y=0, | ||
square_long=True, | ||
square_short=False, | ||
opt_rotation=None, | ||
): | ||
width = rect["width"] | ||
height = rect["height"] | ||
rotation = rect["rotation"] | ||
image_width = image_size[0] | ||
image_height = image_size[1] | ||
|
||
if rotation is not None and opt_rotation is not None: | ||
rotation += opt_rotation | ||
rotation = normalize_radians(rotation) | ||
|
||
if rotation is None: | ||
rect["x_center"] = rect["x_center"] + width * shift_x | ||
rect["y_center"] = rect["y_center"] + height * shift_y | ||
else: | ||
x_shift = ( | ||
image_width * width * shift_x * np.cos(rotation) | ||
- image_height * height * shift_y * np.sin(rotation) | ||
) / image_width | ||
y_shift = ( | ||
image_width * width * shift_x * np.sin(rotation) | ||
+ image_height * height * shift_y * np.cos(rotation) | ||
) / image_height | ||
|
||
rect["x_center"] = rect["x_center"] + x_shift | ||
rect["y_center"] = rect["y_center"] + y_shift | ||
|
||
if square_long: | ||
long_side = np.max((width * image_width, height * image_height)) | ||
width = long_side / image_width | ||
height = long_side / image_height | ||
elif square_short: | ||
short_side = np.min((width * image_width, height * image_height)) | ||
width = short_side / image_width | ||
height = short_side / image_height | ||
|
||
rect["width"] = width * scale_x | ||
rect["height"] = height * scale_y | ||
|
||
return rect | ||
|
||
|
||
def slice_from_roi(roi, image_size, horizontal_side=True): | ||
if horizontal_side: | ||
center = roi["x_center"] | ||
norm_side = roi["width"] | ||
image_side = image_size[0] | ||
else: | ||
center = roi["y_center"] | ||
norm_side = roi["height"] | ||
image_side = image_size[1] | ||
|
||
first_id = int((center - norm_side / 2) * image_side) | ||
second_id = int((center + norm_side / 2) * image_side) | ||
|
||
return (first_id, second_id) |
Oops, something went wrong.