Skip to content

Commit

Permalink
4B notes: mar 11
Browse files Browse the repository at this point in the history
  • Loading branch information
RetroCraft committed Mar 11, 2024
1 parent 8556b89 commit 6c9d36f
Show file tree
Hide file tree
Showing 7 changed files with 622 additions and 4 deletions.
Binary file modified CS480/notes.pdf
Binary file not shown.
269 changes: 266 additions & 3 deletions CS480/notes.tex

Large diffs are not rendered by default.

Binary file modified PMATH370/notes.pdf
Binary file not shown.
346 changes: 345 additions & 1 deletion PMATH370/notes.tex
Original file line number Diff line number Diff line change
Expand Up @@ -2119,7 +2119,7 @@ \section{Generated iterated function systems}
\begin{defn}[compactness]
A subset $A \subseteq \R^n$ is \term*{compact} if $A$ is closed and bounded.

Write $\K_n$ for the set of all compact subsets of $\R^n$.
Write $\K_n$ for the set of all non-empty compact subsets of $\R^n$.
\end{defn}

\begin{defn}[generalized iterated function system]
Expand Down Expand Up @@ -2314,6 +2314,350 @@ \section{Generated iterated function systems}
to fix the fact that $d$ is not symmetric.
\end{defn}

\lecture{Mar 6}
\begin{fact}
$D$ is a metric on $\K_n$
\end{fact}
We take this fact without proof.

\begin{example}
$A = \{(1,1)\}$, let $B=\{(x, 0): 0 \leq x \leq 1\}$

[figure]

Then, $d(A, B) = 1$, $d(B, A) = \sqrt{2}$,
and $D(A, B) = \max\{1, \sqrt{2}\} = \sqrt{2}$.
\end{example}

\begin{lemma}\label{lem:D1}
Let $f : \R^n \to \R^n$ be a linear contraction such that
$\norm{f(\x)-f(\y)} \leq \lambda \norm{\x-\y}$ for some $\lambda \in (0,1)$.

Then, for $A, B \in \K_n$, $D(f(A), f(B)) \leq \lambda D(A, B)$.
\end{lemma}
\begin{prf}
First, we have
\[
d(f(a), f(B)) = \min_{b \in B} \norm{f(a)-f(b)}
\leq \min_{b \in B} \lambda \norm{a-b}
= \lambda \min_{b \in B} \norm{a-b}
= \lambda d(a, B)
\]
and so
\[
d(f(A), f(B)) = \max_{a \in A} d(f(a), f(B))
\leq \lambda \max_{a \in A} d(a, B)
= \lambda d(A, B)
\leq \lambda D(A, B)
\]
Therefore, $d(f(A), f(B)) \leq \lambda D(A, B)$.
Similarly, $d(f(B), f(A)) \leq \lambda D(A, B)$.

Hence, $D(f(A), f(B)) \leq \lambda D(A, B)$.
\end{prf}

\begin{lemma}\label{lem:D2}
For $A_1, A_2, B_1, B_2 \in \K_n$,
\[ D(A_1 \cup A_2, B_1 \cup B_2) \leq \max\{D(A_1, B_1), D(A_2, B_2)\} \]
\end{lemma}
\begin{prf}
First,
\begin{align*}
d(A_1 \cup A_2, B_1 \cup B_2)
& = \max_{a \in A_1 \cup A_2} d(a, B_1 \cup B_2) \\
& = \max\qty{\max_{a \in A_1} d(a, B_1 \cup B_2), \max_{a \in A_2} d(a, B_1 \cup B_2)} \\
& \leq \max\qty{\max_{a \in A_1} d(a, B_1), \max_{a \in A_2} d(a, B_2)} \tag{$\star$}
\end{align*}
by the min in the definition.

$= \max\{d(A_1, B_1), d(A_2, B_2)\} \leq \max\{D(A_1, B_1), D(A_2, B_2)\}$

Hence, $d(A_1 \cup A_2, B_1 \cup B_2) \leq \max\{D(A_1, B_1), D(A_2, B_2)\}$

Similarly, $d(B_1 \cup B_2, A_1 \cup A_2) \leq \max\{D(A_1, B_1), D(A_2, B_2)\}$

Therefore $D(A_1 \cup A_2, B_1 \cup B_2) \leq \max\{D(A_1, B_1), D(A_2, B_2)\}$
\end{prf}

\begin{lemma}\label{lem:D3}
Let $F_1, \cdots, F_k$ be linear contractions with contraction factor $\lambda \in (0,1)$.

Consider $F: \K_n \to \K_n, F(A) = F_1(A) \cup F_2(A) \cup \cdots \cup F_k(A)$.
Then, $D(F(A), F(B)) \leq \lambda D(A, B)$.
\end{lemma}
\begin{prf}
We have, $D(F(A), F(B)) \leq \max_{i = 1,\dotsc,k} D(F_i(A), F_i(B))$ by \cref{lem:D2}.
By \cref{lem:D1}, $\leq \max_{i = 1,\dotsc,k} \lambda D(A, B) = \lambda D(A, B)$.
\end{prf}

\begin{defn}
Let $(X, d)$ be metric space.
\begin{enumerate}[nosep]
\item $(x_n) \subseteq X$ is \term{Cauchy} if
$\forall \epsilon > 0$, $\exists n \in \N$, such that
$n, m \geq N \implies d(x_n, x_m) < \epsilon$.
\item $X$ is \term{complete} if every Cauchy sequence $(x_n) \subseteq X$
converges to some $x \in X$.
\end{enumerate}
\end{defn}

\begin{fact}
$(K_n, D)$ is complete.
\end{fact}
We do not prove this.

\lecture{Mar 8}
\begin{theorem}
Let $F_1,\dotsc,F_k$ be linear contractions with contraction factor $\lambda \in (0,1)$.

Let $F : \K_n \to \K_n$ be the corresponding IFS. Then,
\begin{enumerate}[nosep]
\item $F$ has a unique fixed point $A^*$, which we call the \term{attractor}.
\item For all $A \in \K_n$, $F^m(A) \to A^*$.
\end{enumerate}
\end{theorem}
\begin{prf}
Fix $A \in \K_n$. Consider its orbit $F^m(A)$. Look at the distance
\begin{align*}
D(F^{m+1}(A), F^m(A)) = D(F^m(F(A)), F^m(A)) \leq \lambda^m D(F(A),A)
\end{align*}
by \cref{lem:D3}. Let $\epsilon_m = \lambda^m D(F(A),A)$.
Then, $\sum \epsilon_m$ converges, since $\abs{\lambda} < 1$.
Therefore, the sequence $(F^m(A)) \subseteq \K_n$ is strongly Cauchy.
In particular, $F^m(A)$ is Cauchy,
so there exists some $F^m(A) \to A^* \in \K_n$ because $\K_n$ is complete.

Since $F$ is continuous, $F^{m+1}(A) \to F(A^*)$.
Hence, $F(A^*) = A^*$.

Now, consider uniqueness.
Suppose $A^*$ and $B^*$ are fixed points for $F$. Then,
\[
D(A^*, B^*) = D(F(A^*), F(B^*)) \leq \lambda D(A^*, B^*)
\]
but $\lambda \in (0,1)$. This forces $D(A^*, B^*) = 0$, so $A^* = B^*$.
\end{prf}

\chapter{Complex Functions}

\section{Foundations}
\begin{defn*}[complex derivative]
Let $f : \C \to \C$. Then,
\begin{enumerate}
\item For $z_0 \in \C$, we say that
\[ \lim_{z \to z_0}f(z) = L \in \C \]
if for all $\varepsilon > 0$, there exists a $\delta > 0$ such that
\[ 0 < \abs{z - z_0} < \delta \implies \abs{f(z) - L} < \varepsilon \]
\item The derivative of $f(z)$ at $z_0$ is
\[ f'(z) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z-z_0} \]
provided the limit exists.
\end{enumerate}
\end{defn*}

In general, we will write $f(x)$ for a real-valued function and $f(z)$ for a complex-valued function.
Then, analogous to real-valued functions, we can consider complex fixed points.

\begin{defn*}[complex fixed points]
Let $a \in \C$ be a fixed point of $f(z)$. Then,
\begin{enumerate}[nosep]
\item $a$ is attracting if $\abs{f'(a)} > 1$,
\item $a$ is repelling if $\abs{f'(a)} < 1$, and
\item $a$ is neutral if $\abs{f'(a)} = 1$.
\end{enumerate}
\end{defn*}

\begin{remark}[attracting/repelling complex fixed point theorems]
We can obtain complex analogues of the proofs of the
real-valued attracting/repelling fixed point theorems
by replacing intervals around fixed points with open discs.
\end{remark}

\begin{example}
Analyze the fixed points of $f(z) = z^2 + z + 1$.
\end{example}
\begin{sol}
The fixed points are $z^2 + z + 1 = z \iff z^2 + 1 = 0 \iff z = \pm i$.

Then, $f'(z) = 2z + 1$, so $\abs{f'(i)} = \abs{2i+1} = \sqrt5 > 1$
and $\abs{f'(-i)} = \abs{-2i+1} = \sqrt5 > 1$,
so both are repelling.
\end{sol}

Recall polar form.
For some complex number $z = a + ib$, we can plot it as $(a,b)$:
\begin{center}
\begin{tikzpicture}
\draw[->] (0,0) -- (4,0) node[right] {$\Re$};
\draw[->] (0,0) -- (0,3) node[above] {$\Im$};
\draw[fill=black] (3,2) circle [radius=0.05] node[above right] {$z = a + bi$};
\draw[->, thick, dashed] (0,0) -- (3,2) node[midway, above left] {$r$};
\draw[->, thick] (0,0) -- (1,0) arc (0:33.69:1) node[midway, right] {$\theta$};
\end{tikzpicture}
\end{center}
Then, we can recall from MATH 135 that we can write $z = r(\cos\theta + i\sin\theta) = re^{i\theta}$
and we have really nice multiplication.
\begin{fact}[PM$\C$, MATH 135]
$e^{i\theta}e^{i\phi} = e^{i(\theta + \phi)}$ and $(re^{i\theta})^n = r^ne^{in\theta}$,
which is just so much prettier than Cartesian multiplication.
\end{fact}
In particular, for complex numbers of the form $e^{2\pi i / n}$,
we have $(e^{2\pi i/n})^n = e^{2\pi i} = 1$,
which is a nice way to generate periodic points.

\lecture{Mar 11}
\begin{example}
Let $z = e^{2\pi i/3}$ and $f(w) = w^2$.
\end{example}
\begin{sol}
Write $z = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} = -\frac12 + i\frac{\sqrt3}2$.

Then, $f(z) = e^{4\pi i/3} = -\frac12 - i\frac{\sqrt3}{2}$
and $f^2(z) = e^{8\pi i/3} = e^{2\pi i/3} = z$.

That is, $z$ is periodic with period 2.

We can then find $\abs{(f^2)'(z)} = \abs{f'(z)f'(f(z))} = \abs{-1+i\sqrt3}\cdot\abs{-1-i\sqrt3} = 4 > 1$,
so $z$ is attracting.
\end{sol}

\chapter{Julia Sets}

\section{Construction}

\begin{notation}[quadratic family]
For $c \in \C$, write $Q_c(z) = z^2 + c$ just like the real one.
\end{notation}

\begin{defn}
The \term{filled Julia set} for $c$ is $K_c = \qty{z \in \C : \text{$(Q_c^n(z))$ is bounded}}$.

Equivalently, $\qty{z \in \C : \exists M > 0, \forall n \in \N, \abs{Q_c^n(z) \leq M}}$.
\end{defn}

\begin{remark}
This is the complex analogue of $\Lambda$ for $Q_c(x) = x^2 + c$
where $c \in \R$ and $c < -2$.
\end{remark}

\begin{defn}
Let $(X,d)$ be a metric space and $A \subseteq X$.
\begin{enumerate}[nosep]
\item The \term{closure} of $A$ is $\overline{A} = \{x \in X : \exists (a_n) \subseteq A, a_n \to x\}$.
\item The \term{interior} of $A$ is $\Int(A) = \{x \in X : \exists \varepsilon>0,B_\varepsilon(x) \subseteq A\}$.
\item The \term{boundary} of $A$ is $\partial(A) = \overline{A} \setminus \Int(A)$.
\end{enumerate}
\end{defn}

\begin{example}
Let $A$ be the blob
\begin{center}
\begin{tikzpicture}[use Hobby shortcut,scale=0.5]
% [tex.se/603127] stolen blob shape
\fill[blue!20] (-3.5,0.5) .. (-3,2.5) .. (-1,3.5).. (1.5,3).. (4,3.5).. (5,2.5).. (5,0.5) ..(2.5,-2).. (0,-0.5).. (-3,-2).. (-3.5,0.5);
\draw[blue,dashed] (-3.5,0.5) .. (-3,2.5) .. (-1,3.5).. (1.5,3).. (4,3.5).. (5,2.5);
\draw[blue] (5,2.5) .. (5,0.5) ..(2.5,-2).. (0,-0.5).. (-3,-2).. (-3.5,0.5);
\end{tikzpicture}
\end{center}
Find the closure, interior, and boundary.
\end{example}
\begin{sol}
Since we can make a sequence of points that reaches the dashed open parts,
the closure $\overline{A}$ will simply be
\begin{center}
\begin{tikzpicture}[use Hobby shortcut,scale=0.5]
% [tex.se/603127] stolen blob shape
\draw[blue,fill=blue!20] (-3.5,0.5) .. (-3,2.5) .. (-1,3.5).. (1.5,3).. (4,3.5).. (5,2.5).. (5,0.5) ..(2.5,-2).. (0,-0.5).. (-3,-2).. (-3.5,0.5);
\end{tikzpicture}
\end{center}
Then, since we can draw a ball on the shaded inside but not on the edge,
the interior $\Int(A)$ is
\begin{center}
\begin{tikzpicture}[use Hobby shortcut,scale=0.5]
% [tex.se/603127] stolen blob shape
\fill[blue!20] (-3.5,0.5) .. (-3,2.5) .. (-1,3.5).. (1.5,3).. (4,3.5).. (5,2.5).. (5,0.5) ..(2.5,-2).. (0,-0.5).. (-3,-2).. (-3.5,0.5);
\end{tikzpicture}
\end{center}
Finally, the boundary $\partial(A)$ is
\begin{center}
\begin{tikzpicture}[use Hobby shortcut,scale=0.5]
% [tex.se/603127] stolen blob shape
\draw[blue] (-3.5,0.5) .. (-3,2.5) .. (-1,3.5).. (1.5,3).. (4,3.5).. (5,2.5).. (5,0.5) ..(2.5,-2).. (0,-0.5).. (-3,-2).. (-3.5,0.5);
\end{tikzpicture}
\end{center}
\end{sol}

\begin{remark}
$A$ is closed if and only if $A = \overline{A}$.
\end{remark}

\begin{lemma}[Assignment 4]
$K_c$ is closed.
\end{lemma}

\begin{defn}
The \term{Julia set} for $c$ is $J_c = \partial(K_c)$.
\end{defn}

\begin{remark}
Since $K_c$ is closed, $J_c = \partial(K_c) = \overline{K_c} \setminus \Int(K_c) = K_c \setminus \Int(K_c)$.
\end{remark}

\begin{example}
Let $c = 0$, so $Q_0(z) = z^2$. What do $K_0$ and $J_0$ look like?
\end{example}
\begin{sol}
Let $z = re^{i\theta}$.
Then, $\abs{Q_0(z)} = \abs{r^2e^{2i\theta}} = r^2$.
Likewise, $\abs{Q_0^2(z)} = \abs{r^4e^{2i\theta}} = r^8$.
Clearly, $\abs{Q_0^2(z)} = r^{2^n}$.
Therefore, $K_0 = \{z \in \C : \abs{z} \leq 1\}$
since that is when $\abs{z}^{2^n}$ is bounded.

This is the unit disc in the complex plane.
Therefore, $J_0 = \{z \in \C : \abs{z} = 1\}$, the unit circle.
\end{sol}

\begin{example}
Repeat with $c = -2$.
\end{example}
\begin{sol}
First, let $R = \{z \in \C : \abs{z} > 1\}$
and define a function $H : R \to \C : z \mapsto z + \frac{1}{z}$.

Then, we claim that $H$ is injective. Suppose $H(z) = H(w)$. Then,
\begin{align*}
z + \frac1z & = w + \frac1w \\
zw & = z^2 + 1 - \frac{z}{w} \\
& = w^2 + 1 - \frac{w}{z} \\
w^2 - z^2 & = \frac{w}{z} - \frac{z}{w} = \frac{w^2-z^2}{zw}
\end{align*}
This means that either $zw = 1$ or $w^2 - z^2 = 0$.
However, $\abs{zw} = \abs{z}\cdot\abs{w} > 1$, so $w = \pm z$.
Since $H(w) = H(z)$, we must pick $w = +z$, and we are done.

Now, claim that $H : R \to \C \setminus [-2,2]$ is surjective.
Suppose that $H(z) = w$. Then,
\begin{align*}
z + \frac1z & = w \\
z^2 - wz + 1 & = 0 \\
z & = \frac12(w \pm \sqrt{w^2 - 4})
\end{align*}
and write $z_+$ or $z_-$ for the two possible $z$'s.
Since these are roots of a polynomial with constant 1,
we must have $z_+z_- = 1$.

That is, either (1) $\abs{z_+} > 1$ and $\abs{z_-} < 1$,
(2) $\abs{z_+} < 1$ and $\abs{z_-} > 1$,
or (3) $\abs{z_+} = \abs{z_-} = 1$.

If either root is in $R$, then either $H(z_+) = w$ or $H(z_-) = w$.

Otherwise, $\abs{z_+} = \abs{z_-} = 1$.
Then, $H(z) = H(e^{i\theta}) = e^{i\theta} + e^{-i\theta} = 2\cos\theta \in [-2,2]$.

Therefore, $H$ is well-behaved (i.e., invertible) on $R \to \C \setminus [-2,2]$.
\end{sol}

\pagebreak
\phantomsection\addcontentsline{toc}{chapter}{Back Matter}
\renewcommand{\listtheoremname}{List of Named Results}
Expand Down
3 changes: 3 additions & 0 deletions latex/agony-cs480.tex
Original file line number Diff line number Diff line change
Expand Up @@ -9,8 +9,11 @@
\newcommand{\e}{\vb{e}}
\newcommand{\I}{\mathbb{I}}
\newcommand{\h}{\vb{h}}
\renewcommand{\k}{\vb{k}}
\newcommand{\p}{\vb{p}}
\newcommand{\q}{\vb{q}}
\newcommand{\U}{\vb{U}}
\renewcommand{\v}{\vb{v}}
\newcommand{\w}{\vb{w}}
\newcommand{\W}{\vb{W}}
\newcommand{\x}{\vb{x}}
Expand Down
7 changes: 7 additions & 0 deletions latex/agony-note.tex
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,12 @@
headpunct={\\[3pt]},
postheadspace={0pt}
]{thmroundresult}
\declaretheoremstyle[
headfont=\bfseries\color{Violet},
notefont=\mdseries,
bodyfont=\normalfont,
mdframed={style=mdquote,linecolor=Violet,backgroundcolor=Periwinkle!5},
]{thmquotestrongresult}
\declaretheoremstyle[
headfont=\bfseries\color{Violet},
mdframed={style=mdsquare,linecolor=Violet,backgroundcolor=Periwinkle!5},
Expand All @@ -64,6 +70,7 @@
mdframed={style=mdquote,linecolor=RoyalBlue,backgroundcolor=CornflowerBlue!5},
]{thmquoteresult}
\declaretheorem[Refname={Theorem,Theorems},refname={thm.,thms.},style=thmroundresult,numberwithin=section]{theorem}
\declaretheorem[Refname={Fact,Facts},refname={fact,facts},style=thmquotestrongresult,sibling=theorem]{fact}
\declaretheorem[Refname={Lemma,Lemmas},refname={lem.,lems.},style=thmsquareresult,sibling=theorem]{lemma}
\declaretheorem[name=Proposition,Refname={Proposition,Propositions},refname={prop.,props.},style=thmprop,sibling=theorem]{prop}
\declaretheorem[Refname={Corollary,Corollaries},refname={cor.,cors.},style=thmquoteresult,sibling=theorem]{corollary}
Expand Down
Loading

0 comments on commit 6c9d36f

Please sign in to comment.