Skip to content

Commit

Permalink
NHST alternatives lecture added
Browse files Browse the repository at this point in the history
  • Loading branch information
Sharon Klinkenberg committed Feb 23, 2024
1 parent 191382d commit 1dd4608
Show file tree
Hide file tree
Showing 35 changed files with 7,305 additions and 47 deletions.
14 changes: 14 additions & 0 deletions bibliography.bib
Original file line number Diff line number Diff line change
Expand Up @@ -52,4 +52,18 @@ @article{hoekstra2014robust
pages={1157--1164},
year={2014},
publisher={Springer}
}

@article{KLINKENBERG20111813,
title = {Computer adaptive practice of Maths ability using a new item response model for on the fly ability and difficulty estimation},
journal = {Computers & Education},
volume = {57},
number = {2},
pages = {1813-1824},
year = {2011},
issn = {0360-1315},
doi = {https://doi.org/10.1016/j.compedu.2011.02.003},
url = {https://www.sciencedirect.com/science/article/pii/S0360131511000418},
author = {S. Klinkenberg and M. Straatemeier and H.L.J. {van der Maas}},
keywords = {IRT, CAT, CAP, Computer adaptive practice, Serious gaming, Progress monitoring, Item calibration}
}
634 changes: 634 additions & 0 deletions courses/SM/2023-2024-S2/alternatives_nhst/alternatives_nhst.html

Large diffs are not rendered by default.

14 changes: 14 additions & 0 deletions courses/SM/2023-2024-S2/alternatives_nhst/alternatives_nhst.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,20 @@ format:
```{r child="../../../../topics/confidence_interval/confidence_interval.qmd", eval=TRUE}
```

# Conclusion

> Use both NHST and confidence intervals
## Example {.smaller}

![](https://ars.els-cdn.com/content/image/1-s2.0-S0360131511000418-gr5.jpg){.absolute bottom=20 right=50 height="200"}

::: {style="font-size: 70%"}

We also studied the validity by comparing the mean ability ratings of children in different grades. We expected a positive relation between grade and ability. Figure 5 shows the average ability rating for each grade and domain. As expected, children in older age groups had a higher rating than children in younger age groups. In all four domains, there is an overall significant effect of grade: addition $F(5,1456)=1091.4,p<.01,\omega^2=.78$, subtraction $F(5,1363)=780.5,p<.01,\omega^2=.74$, multiplication $F(5,1215)=409.6,p<.01,\omega^2=.62$, and $F(5,973)=223.31,p<.01,\omega^2=.53$ for division. Levene's tests show differences in variances for the domains multiplication and division. However, the non-parametric Kruskal-Wallis tests also show significant differences for these domains: $\chi^2(5)=753.28,p<.01$ for multiplication and $\chi^2(5)=505.17,p<.01$ for division. For all domains, post hoc analyses show significant differences between all grades, except for the differences between grades five and six [@KLINKENBERG20111813].

:::

<!-- Footer insert below -->

```{r child="../../../../footer.qmd"}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -363,31 +363,76 @@ <h1 class="title">Alternatives to NHST</h1>
</section>
<section>
<section id="the-problem-with-p-values" class="title-slide slide level1 center" data-background-image="Sad-P.webp" data-background-color="black">
<h1>The problem with P-values</h1>
<h1>The problem with <br>P-values</h1>

</section>
<section id="there-is-no-problem" class="slide level2">
<h2>There is no problem</h2>
<p>The problem with P-values is that they are often <strong>misunderstood</strong> and <strong>misinterpreted</strong>. The P-value is the probability of observing a test statistic as or more extreme as the one obtained, given that the null hypothesis is true. It is not the probability that the null hypothesis is true. The P-value is not a measure of the strength of the evidence against the null hypothesis.</p>
<p>The problem with P-values is that they are often <strong>misunderstood</strong> and <strong>misinterpreted</strong>. The P-value is the probability of observing a sample statistic as or more extreme as the one obtained, given that the null hypothesis is true. It is <strong>NOT</strong> the probability that the null hypothesis is true. The P-value is <strong>NOT</strong> a measure of the strength of the evidence against the null hypothesis.</p>
<blockquote>
<p>The mis interpretation is the problem, and not adhering to the Nayman-Pearson framework</p>
<p>The misinterpretation is the problem, and not adhering to the Nayman-Pearson paradigm</p>
</blockquote>
</section>
<section id="the-dance-of-the-p-value" class="slide level2">
<h2>The dance of the P-value</h2>
<div class="columns">
<div class="column" style="width:60%;">
<div class="responsive-container">
<div id="player">

</div>
</div>
</div><div class="column" style="width:40%;">
<div class="cell">
<script>
var tag = document.createElement('script');
tag.src = "https://www.youtube.com/iframe_api";
var firstScriptTag = document.getElementsByTagName('script')[0];
firstScriptTag.parentNode.insertBefore(tag, firstScriptTag);
var player;
function onYouTubeIframeAPIReady() {
player = new YT.Player('player', {
videoId: 'ez4DgdurRPg',
});
}
function setCurrentTime(slideNum) {
var object = [ 58, 235, 396, 480 ];
player.seekTo(object[slideNum]);
}
</script>
</div>
<ul>
<li><a href="https://youtu.be/ez4DgdurRPg?si=z7oIlKZx6iZjHNYH&amp;t=58">Should replication reveal the same <em>p</em>?</a></li>
<li><a href="https://youtu.be/ez4DgdurRPg?si=pN0QTEjARl_2mUO0&amp;t=235">What Power are you using</a></li>
<li><a href="https://youtu.be/ez4DgdurRPg?si=QQku6BKu4C-8BvhF&amp;t=396">Increasing the power</a></li>
<li><a href="https://youtu.be/ez4DgdurRPg?si=QPAcDeFmG-BUe8ZH&amp;t=480">Comparing CI’s to single point</a></li>
<li>
<a href="javascript:void(0);" onclick="setCurrentTime(0)">Should replication reveal the same <em>p</em>?</a>
</li>
<li>
<a href="javascript:void(0);" onclick="setCurrentTime(1)">What Power are you using</a>
</li>
<li>
<a href="javascript:void(0);" onclick="setCurrentTime(2)">Increasing the power</a>
</li>
<li>
<a href="javascript:void(0);" onclick="setCurrentTime(3)">Comparing CI’s to single point</a>
</li>
</ul>
</div>
</div>
</section>
<section id="h0-and-ha-distribution" class="slide level2 center">
<h2>H0 and HA distribution</h2>
<div class="cell" data-layout-align="center" data-screenshot.opts="{&quot;delay&quot;:5}">
<iframe src="https://sharon-klinkenberg.shinyapps.io/tiny-effects/?showcase=0" width="1200px" height="340px" data-external="1">
</iframe>
</div>
</section>
<section id="gpower" class="slide level2">
<h2>G*Power</h2>
<p>Determine the required sample size for a desired test power, significance level, and effect size.</p>
<blockquote>
<p>G*Power is a tool to compute statistical power analyses for many different <span class="math inline">\(t\)</span> tests, <span class="math inline">\(F\)</span> tests, <span class="math inline">\(\chi^2\)</span> tests, <span class="math inline">\(z\)</span> tests and some exact tests.</p>
</blockquote>
<p><a href="http://www.gpower.hhu.de/">gpower.hhu.de</a></p>
<p><img data-src="https://www.psychologie.hhu.de/fileadmin/_processed_/f/d/csm_GPowerIcon_b6bfb17f0c.png" class="absolute" style="bottom: 0px; right: 50px; height: 220px; "></p>
</section></section>
<section>
<section id="confidence-interval" class="title-slide slide level1 center">
Expand All @@ -405,16 +450,17 @@ <h2>Standard Error</h2>
<li>Lowerbound = <span class="math inline">\(\bar{x} - 1.96 \times SE\)</span></li>
<li>Upperbound = <span class="math inline">\(\bar{x} + 1.96 \times SE\)</span></li>
</ul>
<p><img data-src="https://upload.wikimedia.org/wikipedia/commons/3/3a/Standard_deviation_diagram_micro.svg" class="absolute fragment" style="bottom: 0px; right: 50px; height: 220px; "></p>
</section>
<section id="plot-ci" class="slide level2">
<h2>Plot CI</h2>

<img data-src="alternatives_nhst_files/figure-revealjs/unnamed-chunk-4-1.png" width="960" class="r-stretch"></section>
<img data-src="alternatives_nhst_files/figure-revealjs/unnamed-chunk-6-1.png" width="960" class="r-stretch"></section>
<section id="out-of-100-samples" class="slide level2">
<h2>5 out of 100 samples</h2>
<div class="cell">
<div class="cell-output-display">
<p><img data-src="alternatives_nhst_files/figure-revealjs/unnamed-chunk-5-1.png" width="960" height="600"></p>
<p><img data-src="alternatives_nhst_files/figure-revealjs/unnamed-chunk-7-1.png" width="960" height="600"></p>
</div>
</div>
</section>
Expand All @@ -423,16 +469,16 @@ <h2>Common Misinterpretations</h2>
<p>Confidence intervals and levels are frequently misunderstood, and published studies have shown that even professional scientists often misinterpret them <span class="citation" data-cites="wiki:Confidence_interval">(<a href="#/references" role="doc-biblioref" onclick="">Wikipedia, 2024</a>)</span></p>
<p><span class="citation" data-cites="hoekstra2014robust">Hoekstra, Morey, Rouder, &amp; Wagenmakers (<a href="#/references" role="doc-biblioref" onclick="">2014</a>)</span> administerred the following questionair to 120 researchers.</p>
</section>
<section id="section" class="slide level2">
<section id="section" class="slide level2 smaller">
<h2></h2>
<div class="columns">
<div class="column" style="width:60%;">
<div class="column" style="width:70%;">
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="https://media.springernature.com/full/springer-static/image/art%3A10.3758%2Fs13423-013-0572-3/MediaObjects/13423_2013_572_Figa_HTML.gif"></p>
</figure>
</div>
</div><div class="column" style="width:40%;">
</div><div class="column" style="width:30%;">
<div class="fragment">
<div class="callout callout-important callout-titled callout-style-default">
<div class="callout-body">
Expand Down Expand Up @@ -463,7 +509,7 @@ <h2>Researcher don’t know</h2>
</colgroup>
<thead>
<tr class="header">
<th>Number</th>
<th>#True</th>
<th>First-Year Students (n = 442)</th>
<th>Master Students (n = 34)</th>
<th>Researchers (n = 118)</th>
Expand Down Expand Up @@ -514,9 +560,20 @@ <h2>Researcher don’t know</h2>
</tr>
</tbody>
</table>
</section></section>
<section>
<section id="conclusion" class="title-slide slide level1 center">
<h1>Conclusion</h1>
<blockquote>
<p>Use both NHST and confidence intervals</p>
</blockquote>
</section>
<section id="ci-compare-to-h0" class="slide level2">
<h2>CI compare to H0</h2>
<section id="example" class="slide level2 smaller">
<h2>Example</h2>
<p><img data-src="https://ars.els-cdn.com/content/image/1-s2.0-S0360131511000418-gr5.jpg" class="absolute" style="bottom: 20px; right: 50px; height: 200px; "></p>
<div style="font-size: 70%">
<p>We also studied the validity by comparing the mean ability ratings of children in different grades. We expected a positive relation between grade and ability. Figure 5 shows the average ability rating for each grade and domain. As expected, children in older age groups had a higher rating than children in younger age groups. In all four domains, there is an overall significant effect of grade: addition <span class="math inline">\(F(5,1456)=1091.4,p&lt;.01,\omega^2=.78\)</span>, subtraction <span class="math inline">\(F(5,1363)=780.5,p&lt;.01,\omega^2=.74\)</span>, multiplication <span class="math inline">\(F(5,1215)=409.6,p&lt;.01,\omega^2=.62\)</span>, and <span class="math inline">\(F(5,973)=223.31,p&lt;.01,\omega^2=.53\)</span> for division. Levene’s tests show differences in variances for the domains multiplication and division. However, the non-parametric Kruskal-Wallis tests also show significant differences for these domains: <span class="math inline">\(\chi^2(5)=753.28,p&lt;.01\)</span> for multiplication and <span class="math inline">\(\chi^2(5)=505.17,p&lt;.01\)</span> for division. For all domains, post hoc analyses show significant differences between all grades, except for the differences between grades five and six <span class="citation" data-cites="KLINKENBERG20111813">(<a href="#/references" role="doc-biblioref" onclick="">Klinkenberg, Straatemeier, &amp; van der Maas, 2011</a>)</span>.</p>
</div>
<!-- Footer insert below -->
</section></section>
<section>
Expand Down Expand Up @@ -553,6 +610,9 @@ <h1>References</h1>
<div id="ref-hoekstra2014robust" class="csl-entry" role="listitem">
Hoekstra, R., Morey, R. D., Rouder, J. N., &amp; Wagenmakers, E.-J. (2014). Robust misinterpretation of confidence intervals. <em>Psychonomic Bulletin &amp; Review</em>, <em>21</em>, 1157–1164.
</div>
<div id="ref-KLINKENBERG20111813" class="csl-entry" role="listitem">
Klinkenberg, S., Straatemeier, M., &amp; van der Maas, H. L. J. (2011). Computer adaptive practice of maths ability using a new item response model for on the fly ability and difficulty estimation. <em>Computers &amp; Education</em>, <em>57</em>(2), 1813–1824. https://doi.org/<a href="https://doi.org/10.1016/j.compedu.2011.02.003">https://doi.org/10.1016/j.compedu.2011.02.003</a>
</div>
<div id="ref-wiki:Confidence_interval" class="csl-entry" role="listitem">
Wikipedia. (2024). <em><span class="nocase">Confidence interval</span><span>W</span>ikipedia<span>,</span> the free encyclopedia</em>. <a href="http://en.wikipedia.org/w/index.php?title=Confidence%20interval&amp;oldid=1207611938" class="uri">http://en.wikipedia.org/w/index.php?title=Confidence%20interval&amp;oldid=1207611938</a>.
</div>
Expand Down
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading

0 comments on commit 1dd4608

Please sign in to comment.