Skip to content

📝⭐ Data Science Yelp SQL Project ⭐🍽️This repository contains a data science project focused on analyzing Yelp data using SQL. The objective of this project is to investigate correlations between star ratings and user interactions.

Notifications You must be signed in to change notification settings

Shanabunga/SQL_Data_Science_Project_Yelp_SW

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 

Repository files navigation

📊 Data Science Yelp SQL Project 📊

This project uses SQL to analyze Yelp data, exploring correlations between star ratings and user interactions ("useful," "funny," "cool" votes). Key objectives include profiling data, analyzing interactions, and deriving insights from Yelp’s business data.

Yelp ER Diagram

Project Overview

This analysis investigates how Yelp star ratings correlate with user engagement. SQL queries were applied to identify trends and explore factors affecting customer satisfaction and business performance.

Objectives

  • Data Profiling: Assess table structures, record counts, unique identifiers, and null values.
  • Correlation Analysis: Examine if higher ratings link to more user interactions.
  • Insights Discovery: Explore location, review count, and star ratings to understand customer engagement.

Key Insights

  • Star Ratings & Engagement: Higher ratings correspond with more user interactions, especially for "useful" votes.
  • Top-Performing Locations: Cities like Las Vegas and Phoenix see the highest engagement, likely due to tourism.
  • Open vs. Closed: Open businesses have slightly higher ratings and more reviews, indicating stronger customer interest.

Highlights

  • Most Engaged: 4.0-star businesses receive the most "useful" votes, with Delmonico Steakhouse as a standout.
  • Location Impact: Suburban businesses generally rate higher than those downtown.

Future Directions

  • Sentiment Analysis: Analyze keywords in reviews to understand customer sentiment.
  • Enhanced Location Data: Integrate demographic data to explore neighborhood influence on ratings.

How to Use this Repository

  • SQL Queries: SQL code samples for data profiling and analysis.
  • Insights: Documented findings highlighting Yelp data patterns.

About

📝⭐ Data Science Yelp SQL Project ⭐🍽️This repository contains a data science project focused on analyzing Yelp data using SQL. The objective of this project is to investigate correlations between star ratings and user interactions.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published