Skip to content

ShuGuoJ/CNN-HSI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CNN-HSI

Introduction

This is a reproduction of Convolutional neural networks for hyperspectral image classification.

CNN_HSI

Requirements

  • pytorch 1.3
  • scikit-learn
  • scipy
  • visdom

Experiment

模型分别在PaviaU,Salinas和KSC这三个基准数据集上进行测试。实验总共分为三组,分别为每类样本量为10,每类样本量为50和每类样本量为100.为了减少误差,每组实验分别进行10次,最终的准确率取10次实验的均值。

在PaviaU数据集上的准确率(%)如下表所示:

PaviaU
10 50 100
mean std mean std mean std
82.13 2.52 95.21 0.81 97.35 0.35

在Salinas上的准确率(%)如下表所示:

Salinas
10 50 100
mean std mean std mean std
91.31 1.13 95.08 0.38 96.28 0.42

在KSC数据集上的准确率(%)如下表所示:

KSC
10 50 100
mean std mean std mean std
91.13 1.60 97.39 0.95 98.05 0.37

Runing the code

训练CNN_HSI python CrossTrain.py --name xx --epoch xx --lr xx

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages