Skip to content

Commit

Permalink
Merge pull request #70 from SkalskiP/develop
Browse files Browse the repository at this point in the history
1.5.0-alpha relese
  • Loading branch information
SkalskiP authored Sep 30, 2019
2 parents 97e5742 + 4a309e3 commit a91f750
Show file tree
Hide file tree
Showing 82 changed files with 1,744 additions and 626 deletions.
23 changes: 20 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,17 +21,33 @@ Andrew Ng
## Sneak Peek

<p align="center">
<img width="1000" src=".//examples/alfa-demo.gif" alt="alfa-demo">
<img width="1000" src=".//examples/demo-base.gif" alt="alfa-demo">
</p>

**Figure 1.** Basic version of the application - without AI support

## Advanced AI functionalities

[makesense.ai][1] strives to significantly reduce the time we have to spend on labeling photos. To achieve this, we are going to use many different AI models that will be able to give you recommendations as well as automate repetitive and tedious activities. The first step on this journey is to use a [SSD model][8] pretrained on the [COCO dataset][9], which will do some of the work for you in drawing bboxes on photos and - in future versions of the application - will also suggest a label. We also plan to add, among other things, models that classify photos, detect characteristic features of faces, whole faces, and also human pose. The engine that drives our AI functionalities is [TensorFlow.js][10] - JS version of the most popular framework for training neural networks. This choice allows us not only to speed up your work but also to care about the privacy of your data, because unlike with other commercial and open source tools, your photos do not have to be transferred to the server. This time AI comes to your device!
[makesense.ai][1] strives to significantly reduce the time we have to spend on labeling photos. To achieve this, we are going to use many different AI models that will be able to give you recommendations as well as automate repetitive and tedious activities.

* [SSD model][8] pretrained on the [COCO dataset][9], which will do some of the work for you in drawing bboxes on photos and also (in some cases) suggest a label.
* [PoseNet model][11] is a vision model that can be used to estimate the pose of a person in an image or video by estimating where key body joints are.

In the future, we also plan to add, among other things, models that classify photos, detect characteristic features of faces as well as whole faces. The engine that drives our AI functionalities is [TensorFlow.js][10] - JS version of the most popular framework for training neural networks. This choice allows us not only to speed up your work but also to care about the privacy of your data, because unlike with other commercial and open source tools, your photos do not have to be transferred to the server. This time AI comes to your device!

<p align="center">
<img width="1000" src=".//examples/ai-demo.gif" alt="ai-demo">
<img width="1000" src=".//examples/demo-ssd.gif" alt="ai-demo">
</p>

**Figure 2.** SSD model - allows you to detect multiple objects, speeding up the bbox labeling process


<p align="center">
<img width="1000" src=".//examples/demo-posenet.gif" alt="ai-demo">
</p>

**Figure 3.** PoseNet model - allows you to detect people's poses in photos, automating point labeling in some usecases

## Set Up the Project Locally

```bash
Expand Down Expand Up @@ -119,3 +135,4 @@ Copyright (c) 2019-present, Piotr Skalski
[8]: https://arxiv.org/abs/1512.02325
[9]: http://cocodataset.org
[10]: https://www.tensorflow.org/js
[11]: https://www.tensorflow.org/lite/models/pose_estimation/overview
Binary file added examples/demo-base.gif
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added examples/demo-base.mp4
Binary file not shown.
Binary file added examples/demo-posenet.gif
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added examples/demo-posenet.mp4
Binary file not shown.
Binary file added examples/demo-ssd.gif
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added examples/demo-ssd.mp4
Binary file not shown.
5 changes: 5 additions & 0 deletions package-lock.json

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

1 change: 1 addition & 0 deletions package.json
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
"dependencies": {
"@material-ui/core": "^4.1.1",
"@tensorflow-models/coco-ssd": "^2.0.0",
"@tensorflow-models/posenet": "^2.1.3",
"@tensorflow/tfjs": "^1.2.9",
"@types/jest": "24.0.14",
"@types/node": "12.0.8",
Expand Down
Binary file added public/ico/accept-all.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified public/ico/checkbox-checked.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified public/ico/checkbox-unchecked.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file removed public/ico/left_.png
Binary file not shown.
Binary file added public/ico/reject-all.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file removed public/ico/right_.png
Binary file not shown.
2 changes: 2 additions & 0 deletions src/App.scss
Original file line number Diff line number Diff line change
Expand Up @@ -2,10 +2,12 @@

.App {
--leading-color: #{$secondaryColor};
--button-text-color: #{white};
--hue-value: 172deg;
}

.App.AI {
--leading-color: #{$primaryColor};
--button-text-color: #{$darkThemeSecondColor};
--hue-value: 120deg;
}
10 changes: 6 additions & 4 deletions src/App.tsx
Original file line number Diff line number Diff line change
Expand Up @@ -16,10 +16,11 @@ import classNames from "classnames";
interface IProps {
projectType: ProjectType;
windowSize: ISize;
AIMode: boolean;
ObjectDetectorLoaded: boolean;
PoseDetectionLoaded: boolean;
}

const App: React.FC<IProps> = ({projectType, windowSize, AIMode}) => {
const App: React.FC<IProps> = ({projectType, windowSize, ObjectDetectorLoaded, PoseDetectionLoaded}) => {
const selectRoute = () => {
if (!!PlatformModel.mobileDeviceData.manufacturer && !!PlatformModel.mobileDeviceData.os)
return <MobileMainView/>;
Expand All @@ -35,7 +36,7 @@ const App: React.FC<IProps> = ({projectType, windowSize, AIMode}) => {
};

return (
<div className={classNames("App", {"AI": AIMode})}
<div className={classNames("App", {"AI": ObjectDetectorLoaded || PoseDetectionLoaded})}
draggable={false}
>
{selectRoute()}
Expand All @@ -47,7 +48,8 @@ const App: React.FC<IProps> = ({projectType, windowSize, AIMode}) => {
const mapStateToProps = (state: AppState) => ({
projectType: state.general.projectData.type,
windowSize: state.general.windowSize,
AIMode: state.ai.isObjectDetectorLoaded
ObjectDetectorLoaded: state.ai.isObjectDetectorLoaded,
PoseDetectionLoaded: state.ai.isPoseDetectorLoaded
});

export default connect(
Expand Down
12 changes: 8 additions & 4 deletions src/ai/ObjectDetector.ts
Original file line number Diff line number Diff line change
@@ -1,9 +1,11 @@
import * as cocoSsd from '@tensorflow-models/coco-ssd';
import {ObjectDetection} from "@tensorflow-models/coco-ssd";
import {DetectedObject} from "@tensorflow-models/coco-ssd";
import {DetectedObject, ObjectDetection} from '@tensorflow-models/coco-ssd';
import {store} from "../index";
import {updateObjectDetectorStatus} from "../store/ai/actionCreators";
import {AIActions} from "../logic/actions/AIActions";
import {LabelType} from "../data/enums/LabelType";
import {LabelsSelector} from "../store/selectors/LabelsSelector";
import {AIObjectDetectionActions} from "../logic/actions/AIObjectDetectionActions";
import {updateActiveLabelType} from "../store/labels/actionCreators";

export class ObjectDetector {
private static model: ObjectDetection;
Expand All @@ -14,7 +16,9 @@ export class ObjectDetector {
.then((model: ObjectDetection) => {
ObjectDetector.model = model;
store.dispatch(updateObjectDetectorStatus(true));
AIActions.detectRectsForActiveImage();
store.dispatch(updateActiveLabelType(LabelType.RECTANGLE));
const activeLabelType: LabelType = LabelsSelector.getActiveLabelType();
activeLabelType === LabelType.RECTANGLE && AIObjectDetectionActions.detectRectsForActiveImage();
callback && callback();
})
.catch((error) => {
Expand Down
49 changes: 49 additions & 0 deletions src/ai/PoseDetector.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
import * as posenet from '@tensorflow-models/posenet';
import {PoseNet} from "@tensorflow-models/posenet";
import {Pose} from "@tensorflow-models/posenet";
import {store} from "../index";
import {updatePoseDetectorStatus} from "../store/ai/actionCreators";
import {AIPoseDetectionActions} from "../logic/actions/AIPoseDetectionActions";
import {LabelType} from "../data/enums/LabelType";
import {LabelsSelector} from "../store/selectors/LabelsSelector";
import {updateActiveLabelType} from "../store/labels/actionCreators";

export class PoseDetector {
private static model: PoseNet;

public static loadModel(callback?: () => any) {
posenet
.load({
architecture: 'ResNet50',
outputStride: 32,
inputResolution: 257,
quantBytes: 2
})
.then((model: PoseNet) => {
PoseDetector.model = model;
store.dispatch(updatePoseDetectorStatus(true));
store.dispatch(updateActiveLabelType(LabelType.POINT));
const activeLabelType: LabelType = LabelsSelector.getActiveLabelType();
activeLabelType === LabelType.POINT && AIPoseDetectionActions.detectPoseForActiveImage();
callback && callback();
})
.catch((error) => {
// TODO
throw new Error(error);
})
}

public static predict(image: HTMLImageElement, callback?: (predictions: Pose[]) => any) {
if (!PoseDetector.model) return;

PoseDetector.model
.estimateMultiplePoses(image)
.then((predictions: Pose[]) => {
callback && callback(predictions)
})
.catch((error) => {
// TODO
throw new Error(error);
})
}
}
5 changes: 0 additions & 5 deletions src/data/ImageButtonDropDownData.ts

This file was deleted.

4 changes: 4 additions & 0 deletions src/data/enums/AIModel.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
export enum AIModel {
OBJECT_DETECTION = "OBJECT_DETECTION",
POSE_DETECTION = "POSE_DETECTION"
}
5 changes: 4 additions & 1 deletion src/data/enums/PopupWindowType.ts
Original file line number Diff line number Diff line change
@@ -1,8 +1,11 @@
export enum PopupWindowType {
LOAD_LABEL_NAMES = "LOAD_LABEL_NAMES",
UPDATE_LABEL_NAMES = "UPDATE_LABEL_NAMES",
SUGGEST_LABEL_NAMES = "SUGGEST_LABEL_NAMES",
LOAD_IMAGES = "LOAD_IMAGES",
LOAD_AI_MODEL = "LOAD_AI_MODEL",
EXPORT_LABELS = "EXPORT_LABELS",
INSERT_LABEL_NAMES = 'INSERT_LABEL_NAMES',
EXIT_PROJECT = 'EXIT_PROJECT'
EXIT_PROJECT = 'EXIT_PROJECT',
LOADER = 'LOADER'
}
83 changes: 42 additions & 41 deletions src/logic/actions/AIActions.ts
Original file line number Diff line number Diff line change
@@ -1,53 +1,54 @@
import {DetectedObject} from "@tensorflow-models/coco-ssd";
import {ImageData, LabelRect} from "../../store/labels/types";
import {LabelType} from "../../data/enums/LabelType";
import {LabelsSelector} from "../../store/selectors/LabelsSelector";
import uuidv1 from 'uuid/v1';
import {store} from "../../index";
import {updateImageDataById} from "../../store/labels/actionCreators";
import {ObjectDetector} from "../../ai/ObjectDetector";
import {ImageRepository} from "../imageRepository/ImageRepository";
import {LabelStatus} from "../../data/enums/LabelStatus";
import {AIObjectDetectionActions} from "./AIObjectDetectionActions";
import {AIPoseDetectionActions} from "./AIPoseDetectionActions";
import {ImageData} from "../../store/labels/types";

export class AIActions {
public static detectRectsForActiveImage(): void {
const activeImageData: ImageData = LabelsSelector.getActiveImageData();
AIActions.detectRects(activeImageData.id, ImageRepository.getById(activeImageData.id))
public static excludeRejectedLabelNames(suggestedLabels: string[], rejectedLabels: string[]): string[] {
return suggestedLabels.reduce((acc: string[], label: string) => {
if (!rejectedLabels.includes(label)) {
acc.push(label)
}
return acc;
}, [])
}

public static detectRects(imageId: string, image: HTMLImageElement): void {
if (LabelsSelector.getImageDataById(imageId).isVisitedByObjectDetector)
return;
public static detect(imageId: string, image: HTMLImageElement): void {
const activeLabelType: LabelType = LabelsSelector.getActiveLabelType();

ObjectDetector.predict(image, (predictions: DetectedObject[]) => {
AIActions.savePredictions(imageId, predictions);
})
switch (activeLabelType) {
case LabelType.RECTANGLE:
AIObjectDetectionActions.detectRects(imageId, image);
break;
case LabelType.POINT:
AIPoseDetectionActions.detectPoses(imageId, image);
break;
}
}

public static savePredictions(imageId: string, predictions: DetectedObject[]) {
const imageData: ImageData = LabelsSelector.getImageDataById(imageId);
const predictedLabels: LabelRect[] = AIActions.mapPredictionsToRectLabels(predictions);
const nextImageData: ImageData = {
...imageData,
labelRects: imageData.labelRects.concat(predictedLabels),
isVisitedByObjectDetector: true
};
store.dispatch(updateImageDataById(imageData.id, nextImageData));
public static rejectAllSuggestedLabels(imageData: ImageData) {
const activeLabelType: LabelType = LabelsSelector.getActiveLabelType();

switch (activeLabelType) {
case LabelType.RECTANGLE:
AIObjectDetectionActions.rejectAllSuggestedRectLabels(imageData);
break;
case LabelType.POINT:
AIPoseDetectionActions.rejectAllSuggestedPointLabels(imageData);
break;
}
}

public static mapPredictionsToRectLabels(predictions: DetectedObject[]): LabelRect[] {
return predictions.map((prediction: DetectedObject) => {
return {
id: uuidv1(),
labelIndex: null,
rect: {
x: prediction.bbox[0],
y: prediction.bbox[1],
width: prediction.bbox[2],
height: prediction.bbox[3],
},
isCreatedByAI: true,
status: LabelStatus.UNDECIDED
}
})
public static acceptAllSuggestedLabels(imageData: ImageData) {
const activeLabelType: LabelType = LabelsSelector.getActiveLabelType();
switch (activeLabelType) {
case LabelType.RECTANGLE:
AIObjectDetectionActions.acceptAllSuggestedRectLabels(imageData);
break;
case LabelType.POINT:
AIPoseDetectionActions.acceptAllSuggestedPointLabels(imageData);
break;
}
}
}
Loading

0 comments on commit a91f750

Please sign in to comment.