-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
cadfeac
commit d851668
Showing
3 changed files
with
51,369 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,265 @@ | ||
|
||
from torch.utils.data import Dataset | ||
import torch | ||
import os | ||
from PIL import Image | ||
import matplotlib.pyplot as plt | ||
import torchvision.transforms as transforms | ||
import pandas as pd | ||
import numpy as np | ||
import cv2 | ||
from random import sample | ||
from scipy import stats | ||
import torch.nn.functional as F | ||
#%% | ||
def resizeAndPad(img, size, padColor=0): | ||
|
||
h, w = img.shape[:2] | ||
sh, sw = size | ||
|
||
# interpolation method | ||
if h > sh or w > sw: # shrinking image | ||
interp = cv2.INTER_AREA | ||
else: # stretching image | ||
interp = cv2.INTER_CUBIC | ||
|
||
# aspect ratio of image | ||
aspect = w/h # if on Python 2, you might need to cast as a float: float(w)/h | ||
|
||
# compute scaling and pad sizing | ||
if aspect > 1: # horizontal image | ||
new_w = sw | ||
new_h = np.round(new_w/aspect).astype(int) | ||
pad_vert = (sh-new_h)/2 | ||
pad_top, pad_bot = np.floor(pad_vert).astype(int), np.ceil(pad_vert).astype(int) | ||
pad_left, pad_right = 0, 0 | ||
elif aspect < 1: # vertical image | ||
new_h = sh | ||
new_w = np.round(new_h*aspect).astype(int) | ||
pad_horz = (sw-new_w)/2 | ||
pad_left, pad_right = np.floor(pad_horz).astype(int), np.ceil(pad_horz).astype(int) | ||
pad_top, pad_bot = 0, 0 | ||
else: # square image | ||
new_h, new_w = sh, sw | ||
pad_left, pad_right, pad_top, pad_bot = 0, 0, 0, 0 | ||
|
||
# set pad color | ||
if len(img.shape) is 3 and not isinstance(padColor, (list, tuple, np.ndarray)): # color image but only one color provided | ||
padColor = [padColor]*3 | ||
|
||
# scale and pad | ||
scaled_img = cv2.resize(img, (new_w, new_h), interpolation=interp) | ||
scaled_img = cv2.copyMakeBorder(scaled_img, pad_top, pad_bot, pad_left, pad_right, borderType=cv2.BORDER_CONSTANT, value=padColor) | ||
|
||
return scaled_img | ||
def resizeAndCrop(img, size=(256,256)): | ||
|
||
h, w = img.shape[:2] | ||
sh, sw = size | ||
|
||
# interpolation method | ||
if h > sh or w > sw: # shrinking image | ||
interp = cv2.INTER_AREA | ||
else: # stretching image | ||
interp = cv2.INTER_CUBIC | ||
|
||
# aspect ratio of image | ||
aspect = w/h # if on Python 2, you might need to cast as a float: float(w)/h | ||
|
||
# scaling and cropping | ||
if aspect > 1: # horizontal image | ||
new_h = sh | ||
new_w = np.round(new_h*aspect).astype(int) | ||
extra_region_w = np.floor((new_w-sw)/2).astype(int) | ||
# scale and crop | ||
scaled_img = cv2.resize(img, (new_w, new_h), interpolation=interp) | ||
scaled_img = scaled_img[0:new_h,extra_region_w:new_w-extra_region_w] | ||
elif aspect < 1: # vertical image | ||
new_w = sw | ||
new_h = np.round(new_w/aspect).astype(int) | ||
extra_region_h = np.floor((new_h-sh)/2).astype(int) | ||
# scale and crop | ||
scaled_img = cv2.resize(img, (new_w, new_h), interpolation=interp) | ||
scaled_img = scaled_img[extra_region_h:new_h-extra_region_h,0:new_w] | ||
|
||
else: # square image | ||
new_h, new_w = sh, sw | ||
|
||
scaled_img = cv2.resize(img, (new_w, new_h), interpolation=interp) | ||
|
||
scaled_img = cv2.resize(img, size, interpolation=cv2.INTER_AREA) | ||
return scaled_img | ||
#%% | ||
|
||
def randomCropResize(img,old_size=256,new_size=224): | ||
remove_reg=int((old_size-new_size)/2) | ||
r = np.random.choice([1,2,3,4,5,6]) | ||
if r==1: #top left | ||
return img[0:new_size,0:new_size] | ||
elif r==2: #top right | ||
return img[0:new_size,remove_reg*2:old_size] | ||
elif r==3: #bottom left | ||
return img[remove_reg*2:old_size,0:new_size] | ||
elif r==4: #bottom right | ||
return img[remove_reg*2:old_size,remove_reg*2:old_size] | ||
elif r==5: # center crop | ||
return img[remove_reg:new_size+remove_reg,remove_reg:new_size+remove_reg] | ||
else: # resize | ||
return cv2.resize(img,(new_size,new_size), interpolation = cv2.INTER_AREA) | ||
|
||
#%% | ||
def img_mean_stddev(dataset): | ||
sum_img = [0,0,0] | ||
n = len(dataset) | ||
h , w = dataset[0][0][:2] | ||
N = n * h * w | ||
for img,label in dataset: | ||
sum_img[0] += np.sum(img[:,:,0]) | ||
sum_img[1] += np.sum(img[:,:,1]) | ||
sum_img[2] += np.sum(img[:,:,2]) | ||
mean_val = [np.round(sum_img[0]/(N),2), np.round(sum_img[1]/(N),2), np.round(sum_img[2]/(N),2)] | ||
print(mean_val) | ||
x_m_sq_sum = [0,0,0] | ||
for img,label in dataset: | ||
x_m_sq_sum[0] += np.sum((img[:,:,0] - mean_val[0])**2) | ||
x_m_sq_sum[1] += np.sum((img[:,:,1] - mean_val[1])**2) | ||
x_m_sq_sum[2] += np.sum((img[:,:,2] - mean_val[2])**2) | ||
|
||
stddev_val = [np.round(np.sqrt(x_m_sq_sum[0]/(N)),2), | ||
np.round(np.sqrt(x_m_sq_sum[1]/(N)),2), | ||
np.round(np.sqrt(x_m_sq_sum[2]/(N)),2)] | ||
print(stddev_val) | ||
return mean_val, stddev_val | ||
#%% | ||
class ImageNet(Dataset): | ||
def __init__(self, root_dir, sample_type=None, transform=None): | ||
self.root_dir = root_dir | ||
self.transform = transform | ||
self.img_files = [] | ||
self.labels=[] | ||
self.train_img_mean = [] | ||
self.train_img_std = [] | ||
|
||
if sample_type == 'train': | ||
data = pd.read_csv(self.root_dir+"devkit/data/train_data.csv") | ||
self.img_files = [self.root_dir+x for x in list(data['img_path'])] | ||
self.labels = list(data['label']) | ||
elif sample_type == 'val': | ||
self.img_files = [self.root_dir+"img_val/"+x for x in os.listdir(self.root_dir+"img_val") if ".JPEG" in x] | ||
self.img_files.sort() | ||
self.labels = list(pd.read_csv(self.root_dir+"devkit/data/ILSVRC2012_validation_ground_truth.txt",sep=",",header=None, index_col=False,names=["label"])['label']) | ||
# print(self.img_files[0]) | ||
|
||
def __len__(self): | ||
return len(self.labels) | ||
|
||
def __getitem__(self,idx): | ||
img = cv2.imread(self.img_files[idx]) | ||
# img = np.asarray(img) | ||
img = resizeAndCrop(img,size=(256,256)) | ||
|
||
|
||
# img = cv2.imread(self.img_files[idx]) | ||
# | ||
if self.transform: | ||
img = randomCropResize(img,old_size=256,new_size=224)#random crop or resize | ||
if np.random.rand()>0.5:#random horizontal flip | ||
img = cv2.flip(img,0) | ||
# img = img.astype('float32') | ||
img = img / 255.0 | ||
# print(img.shape) | ||
# img = transforms.ToPILImage()(torch.tensor(img)) | ||
img[:,:,2] = (img[:,:,2] - 0.485)/0.229 | ||
img[:,:,1] = (img[:,:,1] - 0.456)/0.224 | ||
img[:,:,0] = (img[:,:,0] - 0.406)/0.225 | ||
|
||
#img[:,:,2] = (img[:,:,2] - 0.485) | ||
#img[:,:,1] = (img[:,:,1] - 0.456) | ||
#img[:,:,0] = (img[:,:,0] - 0.406) | ||
# | ||
# img[:,:,0] = (img[:,:,0]-img[:,:,0].min())/(img[:,:,0].max()-img[:,:,0].min()) | ||
# img[:,:,1] = (img[:,:,1]-img[:,:,1].min())/(img[:,:,1].max()-img[:,:,1].min()) | ||
# img[:,:,2] = (img[:,:,2]-img[:,:,2].min())/(img[:,:,2].max()-img[:,:,2].min()) | ||
img = self.transform(img) | ||
label = self.labels[idx]-1 | ||
|
||
return img,label | ||
|
||
#%% | ||
class AVA_Aesthetics_Ranking_Dataset(Dataset): | ||
def __init__(self, root_dir, sample_type=None, transform=None): | ||
self.root_dir = root_dir | ||
self.transform = transform | ||
self.sample_type=sample_type | ||
self.labels = [] | ||
self.files = [] | ||
if sample_type=='train': | ||
# data=pd.read_csv(self.root_dir+"AVA_dataset/AVA_mean_rating_samples_top_10pc_bottom_10pc_train.csv") | ||
data=pd.read_csv(self.root_dir+"AVA_dataset/ILGNet/AVA2/train_ilgnet.txt", sep=" ") | ||
|
||
# self.labels = list(data.mean_rating) | ||
# self.files = list(data.img_id) | ||
self.labels = list(data.label) | ||
self.files = list(data.img) | ||
|
||
|
||
elif sample_type=='val': | ||
# data=pd.read_csv(self.root_dir+"AVA_dataset/AVA_mean_rating_samples_top_10pc_bottom_10pc_test.csv") | ||
data=pd.read_csv(self.root_dir+"AVA_dataset/ILGNet/AVA2/val.txt", sep=" ") | ||
|
||
|
||
# self.labels = list(data.mean_rating) | ||
# self.files = list(data.img_id) | ||
self.labels = list(data.label) | ||
self.files = list(data.img) | ||
|
||
|
||
def __len__(self): | ||
return len(self.labels) | ||
|
||
def __getitem__(self,idx): | ||
# try: | ||
# if self.sample_type=='train': | ||
# img = cv2.imread(os.path.join(self.root_dir,"top_10pc_bottom_10pc_rated_resized_images_224_224_padded_black/train/"+str(self.files[idx])+'.jpg')) | ||
# elif self.sample_type=='val': | ||
# img = cv2.imread(os.path.join(self.root_dir,"top_10pc_bottom_10pc_rated_resized_images_224_224_padded_black/test/"+str(self.files[idx])+'.jpg')) | ||
|
||
# if self.sample_type=='train': | ||
# img = cv2.imread(os.path.join(self.root_dir,"images/"+str(self.files[idx])+'.jpg')) | ||
# elif self.sample_type=='val': | ||
# img = cv2.imread(os.path.join(self.root_dir,"images/"+str(self.files[idx])+'.jpg')) | ||
if self.sample_type=='train': | ||
img = cv2.imread(os.path.join(self.root_dir,"images/"+str(self.files[idx]))) | ||
elif self.sample_type=='val': | ||
img = cv2.imread(os.path.join(self.root_dir,"images/"+str(self.files[idx]))) | ||
|
||
img = resizeAndCrop(img,size=(224,224)) | ||
# img = np.asarray(img) | ||
# if self.sample_type=='train': | ||
# img = resizeAndCrop(img,size=(256,256)) | ||
# else: | ||
# img = resizeAndCrop(img,size=(224,224)) | ||
|
||
|
||
if self.transform: | ||
# if self.sample_type=='train': | ||
# img = randomCropResize(img,old_size=256,new_size=224)#random crop or resize | ||
|
||
if np.random.rand()>0.5: | ||
img = cv2.flip(img,0) | ||
img = img/255.0 | ||
|
||
img[:,:,2] = (img[:,:,2] - 0.485)/0.229 | ||
img[:,:,1] = (img[:,:,1] - 0.456)/0.224 | ||
img[:,:,0] = (img[:,:,0] - 0.406)/0.225 | ||
# | ||
# img[:,:,0] = (img[:,:,0]-img[:,:,0].min())/(img[:,:,0].max()-img[:,:,0].min()) | ||
# img[:,:,1] = (img[:,:,1]-img[:,:,1].min())/(img[:,:,1].max()-img[:,:,1].min()) | ||
# img[:,:,2] = (img[:,:,2]-img[:,:,2].min())/(img[:,:,2].max()-img[:,:,2].min()) | ||
img = self.transform(img) | ||
# img = img.float() | ||
|
||
label = self.labels[idx] | ||
|
||
return img, label | ||
#%% |
Oops, something went wrong.