forked from mana5aS/SfmLearner-Pytorch-TransformerNets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_inference.py
152 lines (122 loc) · 6.17 KB
/
run_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import torch
from imageio import imread, imsave
from skimage.transform import resize
import numpy as np
from path import Path
import argparse
from tqdm import tqdm
from models import DispNetS
from utils import tensor2array
parser = argparse.ArgumentParser(description='Inference script for DispNet learned with \
Structure from Motion Learner inference on KITTI and CityScapes Dataset',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--output-disp", action='store_true', help="save disparity img")
parser.add_argument("--output-depth", action='store_true', help="save depth img")
parser.add_argument("--pretrained", required=True, type=str, help="pretrained DispNet path")
parser.add_argument("--img-height", default=128, type=int, help="Image height")
parser.add_argument("--img-width", default=416, type=int, help="Image width")
parser.add_argument("--no-resize", action='store_true', help="no resizing is done")
parser.add_argument("--dataset-list", default=None, type=str, help="Dataset list file")
parser.add_argument("--dataset-dir", default='.', type=str, help="Dataset directory")
parser.add_argument("--gt-dataset-dir", default='.', type=str, help="GT Dataset directory")
parser.add_argument("--output-dir", default='output', type=str, help="Output directory")
parser.add_argument("--img-exts", default=['png', 'jpg', 'JPEG', 'PNG', 'bmp'], nargs='*', type=str, help="images extensions to glob")
parser.add_argument('--disp-transformer', action='store_true', help='use DPT Transformer network for depthnet')
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
def compute_errors(gt, pred):
thresh = np.maximum((gt / pred), (pred / gt))
a1 = (thresh < 1.25 ).mean()
a2 = (thresh < 1.25 ** 2).mean()
a3 = (thresh < 1.25 ** 3).mean()
rmse = (gt - pred) ** 2
rmse = np.sqrt(rmse.mean())
rmse_log = (np.log(gt) - np.log(pred)) ** 2
rmse_log = np.sqrt(rmse_log.mean())
abs_log = np.mean(np.abs(np.log(gt) - np.log(pred)))
abs_rel = np.mean(np.abs(gt - pred) / gt)
abs_diff = np.mean(np.abs(gt - pred))
sq_rel = np.mean(((gt - pred)**2) / gt)
return np.array([abs_diff, abs_rel, sq_rel, rmse, rmse_log, abs_log, a1, a2, a3])
@torch.no_grad()
def main():
args = parser.parse_args()
if not(args.output_disp or args.output_depth):
print('You must at least output one value !')
return
if args.disp_transformer:
print ("Using Transformer DPT for depth net")
from dpt.models import DPTDepthModel
disp_net = DPTDepthModel(
path=args.pretrained,
scale=0.00006016,
shift=0.00579,
invert=True,
backbone="vitb_rn50_384",
non_negative=True,
enable_attention_hooks=False,
).to(device)
else:
disp_net = DispNetS().to(device)
# weights = torch.load(args.pretrained)
# disp_net.load_state_dict(weights['state_dict'])
disp_net.eval()
dataset_dir = Path(args.dataset_dir)
gt_dataset_dir = Path(args.gt_dataset_dir)
output_dir = Path(args.output_dir)
output_dir.makedirs_p()
if args.dataset_list is not None:
with open(args.dataset_list, 'r') as f:
test_files = [dataset_dir/file for file in f.read().splitlines()]
else:
test_files = sum([list(dataset_dir.walkfiles('*.{}'.format(ext))) for ext in args.img_exts], [])
gt_test_files = sum([list(gt_dataset_dir.walkfiles('*.{}'.format(ext))) for ext in args.img_exts], [])
test_files = sorted(test_files, key=lambda i: int(i.stem))
gt_test_files = sorted(gt_test_files, key=lambda i: int(i.stem))
print('{} files to test'.format(len(test_files)))
print ("gt test files: ", len(gt_test_files))
results = np.zeros(9)
for file, gt_file in tqdm(zip(test_files, gt_test_files)):
img = imread(file)
gt_img = imread(gt_file)
h,w,_ = img.shape
if (not args.no_resize) and (h != args.img_height or w != args.img_width):
img = resize(img, (args.img_height, args.img_width))
img = np.transpose(img, (2, 0, 1))
tensor_img = torch.from_numpy(img.astype(np.float32)).unsqueeze(0)
tensor_img = ((tensor_img - 0.5)/0.5).to(device)
if args.disp_transformer:
depth = disp_net(tensor_img)
output = 1/depth
print ("transformer depth: ", torch.max(depth), torch.min(depth))
else:
output = disp_net(tensor_img)[0]
depth = 100/output
print ("cnn: depth: ", torch.max(depth), torch.min(depth))
scale_factor = np.median(gt_img)/np.median(depth.detach().cpu().numpy())
# print ("scale factor: ", scale_factor)
err = compute_errors(gt_img/scale_factor, depth.detach().cpu().numpy())
# print ("curr err: ", err)
results = results + err
file_path, file_ext = file.relpath(args.dataset_dir).splitext()
file_name = '-'.join(file_path.splitall()[1:])
new_gt = gt_img/np.max(gt_img)
imsave(output_dir/'{}_gt{}'.format(file_name, file_ext), new_gt*255)
from skimage import color
if args.output_disp:
# disp = (255-255*tensor2array(output, max_value=None, colormap='bone')).astype(np.uint8)
disp = output.squeeze().detach().cpu().numpy()
disp = disp/np.max(disp)
disp = 255 - disp * 255
disp = disp.astype(np.uint8)
import cv2
disp = cv2.equalizeHist(disp)
# disp = color.rgb2gray(np.transpose(disp, (1,2,0)))
imsave(output_dir/'{}_disp{}'.format(file_name, file_ext), disp)
if args.output_depth:
# depth = 1/output
# depth = (255*tensor2array(depth, max_value=None, colormap='bone')).astype(np.uint8)
depth = (255*tensor2array(output, max_value=None, colormap='bone')).astype(np.uint8)
imsave(output_dir/'{}_depth{}'.format(file_name, file_ext), np.transpose(depth, (1,2,0)))
print ("mean err (abs_diff, abs_rel, sq_rel, rmse, rmse_log, abs_log, a1, a2, a3): ", results/len(gt_test_files))
if __name__ == '__main__':
main()