construct-js
is a library for creating byte level data structures. It focuses on a declarative API and simplicity of use.
npm i construct-js
The following example builds a completely valid zip archive with one file inside - helloworld.txt
.
const fs = require('fs');
const {
RawString,
U16,
U32,
Struct,
} = require('construct-js');
const data = RawString('helloworldhelloworldhelloworldhelloworldhelloworldhelloworldhelloworldhelloworld');
const filename = RawString('helloworld.txt');
const sharedHeaderInfo = Struct('sharedHeaderInfo')
.field('minVersion', U16(10))
.field('gpFlag', U16(0))
.field('compressionMethod', U16(0))
.field('lastModifiedTime', U16(0))
.field('lastModifiedDate', U16(0))
.field('crc32', U32(0))
.field('compressedSized', U32(data.byteLength))
.field('uncompressedSized', U32(data.byteLength))
.field('filenameSize', U16(filename.byteLength))
.field('extraFieldLength', U16(0));
const localHeader = Struct('localHeader')
.field('header', U32(0x04034b50))
.field('sharedHeaderInfo', sharedHeaderInfo)
.field('filename', filename);
const centralDirectory = Struct('centralDirectory')
.field('header', U32(0x02014b50))
.field('madeByVersion', U16(10))
.field('sharedHeaderInfo', sharedHeaderInfo)
.field('fileCommentSize', U16(0))
.field('diskNumber', U16(0))
.field('internalFileAttributes', U16(0))
.field('externalFileAttributes', U32(0))
.field('relativeOffset', U32(0))
.field('filename', filename);
const endOfCentralDirectory = Struct('endOfCentralDirectory')
.field('header', U32(0x06054b50))
.field('diskNumber', U16(0))
.field('centralDirDiskStart', U16(0))
.field('numberOfCentralDirsOnDisk', U16(1))
.field('totalNumberOfCentralDirs', U16(1))
.field('centralDirSize', U32(0))
.field('offsetToStart', U32(0))
.field('commentLength', U16(0));
const zipFile = Struct('ZipFile')
.field('localHeader', localHeader)
.field('data', data)
.field('centralDirectory', centralDirectory)
.field('endOfCentralDirectory', endOfCentralDirectory);
const offset = zipFile.getOffset('centralDirectory');
endOfCentralDirectory.get('offsetToStart').set(offset);
const fileBuffer = zipFile.toBuffer();
fs.writeFile('./test.zip', fileBuffer, () => {});
Struct(name, littleEndian = true)
Creates a Struct object. If littleEndian is set to true, the Struct will be considered to be little endian ordering.
forceEndianess
forceEndianess is true
by default, which means fields created will be forced into the endianess set when creating the Struct.
.field(name, value)
Adds a field to the struct. name is used to lookup the field using struct.get(name)
. value must be either a Struct
or one of the other data types provided by construct-js.
.get(name)
Returns the field with that name.
.getOffset(name)
Returns the byte offset within the struct of the field with that name.
.getDeep(path)
Returns the field within multiple structs, where path is a .
separated string. For example:
const struct = Struct('firstStruct')
.field('aRawString', RawString('ABC'));
const struct2 = Struct('secondStruct')
.field('deeperStruct', struct);
struct2.getDeep('deeperStruct.aRawString');
.getDeepOffset(path)
Returns the byte offset within multiple structs, where path is a .
separated string.
.computeBufferSize()
Returns the size of the struct in bytes.
.toArrayBuffer()
Returns an ArrayBuffer
representation of the Struct. You should use this if working in the browser.
.toBuffer()
Returns a Buffer
representation of the Struct.
.toBytes()
Returns a regular Array
representation of the Struct.
BitStruct(name)
Creates a BitStruct object, for storing and addressing data on the sub-byte level.
Note: When bitStruct.toBuffer() is used, the resulting buffer will be byte aligned. This means if the size of the BitStruct is 12-bits, the resulting buffer will be 16-bits (2 bytes).
.flag(name, value)
Sets a 1-bit flag in the structure.
.multiBit(name, size, value)
Sets a multi-bit flag of size.
.getOffset(name)
Gets the bit offset of the data with name.
.computeBufferSize()
Returns the size of the BitStruct in bytes.
.toBuffer()
Returns a byte-aligned Buffer
representing the BitStruct.
.toArrayBuffer()
Returns a byte-aligned ArrayBuffer
representing the BitStruct.
.toArray()
Returns a byte-aligned Array
representing the BitStruct.
All fields contain some common properties and methods. These are:
.set(value | values)
Which sets either the value or values of the field.
.setIsLittleEndian(trueOrFalse)
Manually sets this field to little or big endian.
The rest of the properties should be considered private and not modified directly.
U8(value)
A single 8-bit unsigned value.
U16(value)
A single 16-bit unsigned value.
U32(value)
A single 32-bit unsigned value.
I8(value)
A single 8-bit signed value.
I16(value)
A single 16-bit signed value.
I32(value)
A single 32-bit signed value.
RawString(string)
A collection of 8-bit unsigned values, interpreted directly from the string provided. The size of the field is the byte length of the string (which is not always the string.length
when considering unicode).
U8s(array | number)
A collection of 8-bit unsigned values.
If the argument provided is an array, then the size of the field is array.length
bytes, with each value corresponding to an 8-bit interpretation of that value.
U16s(array | number)
A collection of 16-bit unsigned values.
If the argument provided is an array, then the size of the field is array.length * 2
bytes, with each value corresponding to an 16-bit interpretation of that value.
U32s(array | number)
A collection of 32-bit unsigned values.
If the argument provided is an array, then the size of the field is array.length * 4
bytes, with each value corresponding to an 32-bit interpretation of that value.
I8s(array | number)
A collection of 8-bit signed values.
If the argument provided is an array, then the size of the field is array.length
bytes, with each value corresponding to an 8-bit interpretation of that value.
I16s(array | number)
A collection of 16-bit signed values.
If the argument provided is an array, then the size of the field is array.length * 2
bytes, with each value corresponding to an 16-bit interpretation of that value.
I32s(array | number)
A collection of 32-bit signed values.
If the argument provided is an array, then the size of the field is array.length * 4
bytes, with each value corresponding to an 32-bit interpretation of that value.
These fields are the same as those above, but using outdated and ambiguous terminology.
Byte(value)
A single 8-bit unsigned value.
Word(value)
A single 16-bit unsigned value.
DoubleWord(value)
A single 32-bit unsigned value.
SignedByte(value)
A single 8-bit signed value.
SignedWord(value)
A single 16-bit signed value.
SignedDoubleWord(value)
A single 32-bit signed value.
RawString(string)
A collection of 8-bit unsigned values, interpreted directly from the string provided. The size of the field is the byte length of the string (which is not always the string.length
when considering unicode).
Bytes(array | number)
A collection of 8-bit unsigned values.
If the argument provided is an array, then the size of the field is array.length
bytes, with each value corresponding to an 8-bit interpretation of that value.
Words(array | number)
A collection of 16-bit unsigned values.
If the argument provided is an array, then the size of the field is array.length * 2
bytes, with each value corresponding to an 16-bit interpretation of that value.
DoubleWords(array | number)
A collection of 32-bit unsigned values.
If the argument provided is an array, then the size of the field is array.length * 4
bytes, with each value corresponding to an 32-bit interpretation of that value.
SignedBytes(array | number)
A collection of 8-bit signed values.
If the argument provided is an array, then the size of the field is array.length
bytes, with each value corresponding to an 8-bit interpretation of that value.
SignedWords(array | number)
A collection of 16-bit signed values.
If the argument provided is an array, then the size of the field is array.length * 2
bytes, with each value corresponding to an 16-bit interpretation of that value.
SignedDoubleWords(array | number)
A collection of 32-bit signed values.
If the argument provided is an array, then the size of the field is array.length * 4
bytes, with each value corresponding to an 32-bit interpretation of that value.