forked from meteahishali/CSENDistance
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtraining_output_review.py
73 lines (60 loc) · 2.23 KB
/
training_output_review.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
"""
Script to extract the metric values from the training runs
Author: Tim Rosenkranz,
Goethe University, frankfurt am Main, Germany
"""
import argparse
import numpy as np
argparser = argparse.ArgumentParser(description='Metrics extraction.')
argparser.add_argument('-f', '--file', help='Input file.')
args = argparser.parse_args()
filename = args.file
inp_file = open(filename)
lines = inp_file.readlines()
ards = []
srds = []
rmses = []
rmselogs = []
params = [[], []]
for line in lines:
if line.__contains__("ARD:"):
value = line.split(": ")[1].replace('\n', '')
ards.append(float(value))
elif line.__contains__("SRD:"):
value = line.split(": ")[1].replace('\n', '')
srds.append(float(value))
elif line.__contains__("RMSE:"):
value = line.split(": ")[1].replace('\n', '')
rmses.append(float(value))
elif line.__contains__("RMSELog:"):
value = line.split(": ")[1].replace('\n', '')
rmselogs.append(float(value))
elif line.__contains__("Total params:"):
value = line.split(": ")[1].replace('\n', '')
params[0].append(value)
elif line.__contains__("Trainable params:"):
value = line.split(": ")[1].replace('\n', '')
params[1].append(value)
def mean(l: list):
return sum(l) / len(l) if len(l) > 0 else None
def std(l: list, m):
if m is None:
return None
sum_squares = sum([(val - m)**2 for val in l])
return np.sqrt(sum_squares / (len(l) - 1)) / np.sqrt(len(l))
def every_second(l):
return [l[ii] for ii in range(len(l)) if ii%2==0]
def round_to_third(val):
return (round(val*1000)) / 1000
ard = mean(ards)
ard_std = std(ards, ard)
srd = mean(srds)
srd_std = std(srds, srd)
rmse = mean(rmses)
rmse_std = std(rmses, rmse)
rmselog = mean(rmselogs)
rmselog_std = std(rmselogs, rmselog)
print(f'Metrics for the five runs:\n ARD = {round_to_third(ard)} +/- {round_to_third(ard_std)}\n SRD = '
f'{round_to_third(srd)} +/- {round_to_third(srd_std)}\n RMSE = {round_to_third(rmse)} +/- '
f'{round_to_third(rmse_std)}\n RMSElog = {round_to_third(rmselog)} +/- {round_to_third(rmselog_std)}'
f'\n --- \n Number of parameters in each run: {every_second(params[0])}\n / Trainable: {every_second(params[1])}')