ProxyMix: Proxy-based Mixup Training with Label Refinery for Source-Free Domain Adaptation
This implementation is based on ATDOC.
- train on the source domain;
- Construct the proxy source domain and train on target dataset.
- python == 3.6.8
- pytorch ==1.1.0
- torchvision == 0.3.0
- numpy, scipy, sklearn, PIL, argparse, tqdm
- Please manually download the datasets Office, Office-Home, VisDA-C from the official websites, and modify the path of images in each '.txt' under the folder './data/'. [**How to generate such txt files could be found in https://github.com/tim-learn/Generate_list **]
-
# train source model python train_source.py --dset office --s 0 --max_epoch 50 # train target model python train_target.py --dset office --easynum 5 --output test --gpu_id 7 --s 0 --t 1 python train_target.py --dset office --easynum 5 --output test --gpu_id 7 --s 0 --t 2
-
# train source model python train_source.py --dset office-home --s 0 --max_epoch 50 # train target model python train_target.py --dset office-home --easynum 10 --output test --gpu_id 7 --s 0 --t 1 --max_epoch 50
-
# train source model python train_source.py --dset VISDA-C --s 0 --max_epoch 5 # train target model python train_target.py --dset VISDA-C --easynum 50 --output test --gpu_id 7 --s 0 --t 1 --max_epoch 1
If you find this code useful for your research, please cite our papers
@article{ding2022proxymix,
title={ProxyMix: Proxy-based Mixup Training with Label Refinery for Source-Free Domain Adaptation},
author={Ding, Yuhe and Sheng, Lijun and Liang, Jian and Zheng, Aihua and He, Ran},
journal={arXiv preprint arXiv:2205.14566},
year={2022}
}