-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Remove GFF requirement when kallisto pseudoaligner used
- Loading branch information
Showing
7 changed files
with
413 additions
and
56 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,346 @@ | ||
#!/usr/bin/env Rscript | ||
|
||
if (!require("optparse")){ | ||
install.packages("optparse",repos = "http://cran.us.r-project.org") | ||
} | ||
if (!require("tidyverse")){ | ||
install.packages("tidyverse",repos = "http://cran.us.r-project.org") | ||
} | ||
if (!require("scales")){ | ||
install.packages("scales",repos = "http://cran.us.r-project.org") | ||
} | ||
if (!require("RColorBrewer")){ | ||
install.packages("RColorBrewer",repos = "http://cran.us.r-project.org") | ||
} | ||
|
||
|
||
library(optparse) | ||
library(tidyverse) | ||
library(scales) | ||
library(RColorBrewer) | ||
library(reshape2) | ||
|
||
|
||
option_list <- list( | ||
make_option(c("-m", "--metadata"), type="character", default=NULL, | ||
help="sample metadata tsv file", metavar="character"), | ||
make_option(c("-r", "--ref_gene_f"), type="character", default=NULL, | ||
help="Gene annotations in reference strain", | ||
metavar="character"), | ||
make_option(c("-g", "--gene_counts_f"), type="character", default=NULL, | ||
help="Gene annotations in reference strain", | ||
metavar="character"), | ||
make_option(c("-p", "--is_paired"), type="character", default=NULL, | ||
help="are the reads paired-end? default = FALSE", | ||
metavar="character") | ||
) | ||
|
||
opt_parser <- OptionParser(option_list=option_list) | ||
opt <- parse_args(opt_parser) | ||
|
||
meta_f <- opt$metadata | ||
ref_gene_f <- opt$ref_gene_f | ||
gene_counts_f <- opt$gene_counts_f | ||
ispaired <- if(opt$is_paired == "TRUE") TRUE else FALSE | ||
|
||
|
||
##------------------------------------------------------------------------------ | ||
## Read data | ||
##------------------------------------------------------------------------------ | ||
meta_tab <- read.table(meta_f, header = TRUE, sep = "\t") | ||
## columns: sample file1 file2 group rep_no paired | ||
|
||
|
||
## cat the counts files | ||
# system("cat *.counts > merged_counts.txt") | ||
|
||
total_counts_list <- lapply(meta_tab$sample, function(x){ | ||
# total_counts <- read.table(paste0(x,".counts"), header = FALSE, sep = "\t") | ||
# total_counts$sample <- x | ||
# colnames(total_counts) <- c("chr","chr_size","mapped","blank","sample") | ||
# total_counts | ||
mapped_count <- read.table(paste0(x,".counts"), header = FALSE) | ||
colnames(mapped_count) <- "mapped" | ||
mapped_count$sample <- x | ||
mapped_count | ||
}) | ||
merged_total_counts <- as.data.frame(do.call(rbind, total_counts_list)) | ||
|
||
|
||
|
||
##------------------------------------------------------------------------------ | ||
## Read genome annotation | ||
##------------------------------------------------------------------------------ | ||
# ref_annot <- ape::read.gff(gff_f, na.strings = c(".", "?"), GFF3 = TRUE) | ||
|
||
# ref_annot <- subset(ref_annot, type=="gene") | ||
|
||
# gene_attr <- stringr::str_split(ref_annot$attributes,";") | ||
# locus_tags <- unlist(lapply(gene_attr, function(x){x[grepl("locus_tag", x)]})) | ||
# gene_biotypes <- unlist(lapply(gene_attr, function(x){x[grepl("gene_biotype", x)]})) | ||
# common_gene_names <- unlist(lapply(gene_attr, function(x){ | ||
# x <- x[grepl("gene=", x)] | ||
# x[identical(x, character(0))] <- "" | ||
# x | ||
# })) | ||
# gene_lengths <- (ref_annot$end - ref_annot$start) + 1 | ||
|
||
# ref_gene_df <- data.frame( | ||
# locus_tag = locus_tags, | ||
# biotype = gene_biotypes, | ||
# gene_name = common_gene_names, | ||
# gene_length = gene_lengths | ||
# ) | ||
# ref_gene_df$locus_tag <- gsub("locus_tag=","",ref_gene_df$locus_tag) | ||
# ref_gene_df$biotype <- gsub("gene_biotype=","",ref_gene_df$biotype) | ||
# ref_gene_df$gene_name <- gsub("gene=","",ref_gene_df$gene_name) | ||
|
||
# write.table( | ||
# ref_gene_df, "ref_gene_df.tsv", col.names = TRUE, row.names = FALSE, | ||
# sep = "\t", quote = FALSE | ||
# ) | ||
|
||
ref_gene_df <- read_tsv(ref_gene_f) | ||
|
||
|
||
##------------------------------------------------------------------------------ | ||
## Count reads mapping to genes | ||
##------------------------------------------------------------------------------ | ||
# bamfilesCount <- paste0(meta_tab$sample, ".bam") | ||
|
||
# # 0 (unstranded), 1 (stranded) and 2 (reversely stranded) | ||
# strand <- switch(as.character(strandedness), | ||
# "unstranded" = 0, | ||
# "forward" = 1, | ||
# "reverse" = 2, | ||
# stop("Invalid input") | ||
# ) | ||
|
||
# gene_counts <- Rsubread::featureCounts( | ||
# bamfilesCount, annot.ext = gff_f, | ||
# isGTFAnnotationFile = TRUE, | ||
# GTF.featureType = "gene", | ||
# GTF.attrType = "locus_tag", | ||
# nthreads = threads, | ||
# countMultiMappingReads = TRUE, | ||
# fraction = TRUE, ## assign fractional counts to multimappers | ||
# isPairedEnd = ispaired, | ||
# strandSpecific = strand | ||
# ) | ||
# colnames(counts_mat) <- gsub(".bam", "", colnames(counts_mat)) | ||
# colnames(counts_mat) <- gsub("\\.","_",colnames(counts_mat)) | ||
|
||
|
||
# counts_mat <- counts_mat | ||
# counts_mat <- tibble::rownames_to_column(as.data.frame(counts_mat), "feature_id") | ||
|
||
|
||
# write.table( | ||
# counts_mat, "gene_counts.tsv", col.names = TRUE, row.names = FALSE, | ||
# sep = "\t", quote = FALSE | ||
# ) | ||
|
||
# ## protein-coding genes only | ||
# gene_counts_pc <- counts_mat[ref_gene_df$biotype=="protein_coding",] | ||
# write.table( | ||
# gene_counts_pc, "gene_counts_pc.tsv", col.names = TRUE, row.names = FALSE, | ||
# sep = "\t", quote = FALSE | ||
# ) | ||
|
||
gene_counts <- read_tsv(gene_counts_f) | ||
counts_mat <- as.data.frame(gene_counts[,2:ncol(gene_counts)]) | ||
rownames(counts_mat) <- gene_counts$feature_id | ||
|
||
|
||
##------------------------------------------------------------------------------ | ||
## Plot library composition | ||
##------------------------------------------------------------------------------ | ||
## set up plots | ||
brewer_pallette1 <- brewer.pal(9,"Set1") | ||
brewer_pallette3 <- brewer.pal(8,"Dark2") | ||
|
||
gg_color_hue <- function(n) { | ||
hues = seq(15, 375, length = n + 1) | ||
hcl(h = hues, l = 65, c = 100)[1:n] | ||
} | ||
ggColsDefault <- (gg_color_hue(4)) | ||
ggCols <- brewer_pallette1[c(1,3,4,5,2,7,8)] | ||
|
||
## summarise counts per sample | ||
|
||
all_biotypes <- unique(ref_gene_df$biotype) | ||
|
||
biotype_counts <- data.frame(do.call(cbind, | ||
lapply(all_biotypes, function(biotype){ | ||
colSums(counts_mat[ref_gene_df$biotype==biotype,,drop=FALSE]) | ||
}))) | ||
colnames(biotype_counts) <- all_biotypes | ||
|
||
|
||
|
||
counts_summary <- data.frame( | ||
sample = meta_tab$"sample", | ||
group = meta_tab$"group", | ||
rep = meta_tab$"rep_no"#, | ||
# protein_coding = colSums( | ||
# counts_mat[ref_gene_df$biotype=="protein_coding",]), | ||
# tRNA = colSums( | ||
# counts_mat[ref_gene_df$biotype=="tRNA",]), | ||
# rRNA = colSums( | ||
# counts_mat[ref_gene_df$biotype=="rRNA",]) | ||
) | ||
|
||
counts_summary <- cbind(counts_summary,biotype_counts) | ||
|
||
## add total mapped counts | ||
counts_summary <- merge(counts_summary,merged_total_counts, by = "sample") | ||
# counts_summary$other <- counts_summary$mapped-counts_summary$rRNA | ||
|
||
|
||
counts_summary$antisense_other <- counts_summary$mapped - rowSums(biotype_counts)#( | ||
#counts_summary$rRNA + counts_summary$protein_coding) | ||
|
||
write.table( | ||
counts_summary, "counts_summary.tsv", col.names = TRUE, row.names = FALSE, | ||
sep = "\t", quote = FALSE | ||
) | ||
|
||
write.table( | ||
biotype_counts, "biotype_counts.tsv", col.names = TRUE, row.names = FALSE, | ||
sep = "\t", quote = FALSE | ||
) | ||
|
||
|
||
|
||
counts_summary <- counts_summary[rev(order(counts_summary$sample)),] | ||
|
||
|
||
cc1 <- 12 | ||
|
||
all_biotypes <- c(all_biotypes, "antisense_other") | ||
non_rRNA_btypes <- all_biotypes[!all_biotypes=="rRNA"] | ||
|
||
|
||
############################# | ||
## raw counts plot | ||
############################# | ||
counts_melt <- reshape2::melt( | ||
counts_summary, id.vars = c("sample"), | ||
measure.vars = c( | ||
# "protein_coding", | ||
# "antisense_other", | ||
# "rRNA" | ||
all_biotypes | ||
) | ||
) | ||
counts_melt$sample <- factor( | ||
counts_melt$sample, levels = rev(unique(sort(counts_melt$sample))) | ||
) | ||
counts_melt$variable <- factor(counts_melt$variable, levels=c( | ||
"rRNA", | ||
non_rRNA_btypes | ||
# "antisense_other", | ||
# "protein_coding" | ||
) | ||
) | ||
# minUsable <- min(mergedDf$q15_dedup_reads) | ||
|
||
|
||
ylabel <- ifelse(isTRUE(ispaired), "Million read pairs", "Million reads") | ||
|
||
p1 <- ggplot(counts_melt, | ||
aes(x = sample, colour = variable, fill = variable, y = value) | ||
) + | ||
geom_bar(position = "stack", stat = "identity", width = 0.7) + | ||
coord_flip() + | ||
xlab("Sample") + ylab(ylabel) + | ||
scale_fill_manual( | ||
"", | ||
values = ggCols, | ||
guide = guide_legend(reverse = TRUE) | ||
) + | ||
scale_colour_manual(values = ggCols, guide = FALSE) + | ||
scale_y_continuous(labels = unit_format(unit = "", scale = 1e-6)) + | ||
## add a dashed line at the min usable number of reads | ||
# geom_hline(yintercept = 5e6, linetype="dashed") + | ||
theme_bw(base_size = cc1*1.3) + | ||
theme( | ||
legend.position = "top", | ||
legend.title = element_blank(), | ||
legend.text=element_text(size=cc1), | ||
axis.text.x = element_text(colour = "black"), | ||
axis.text.y = element_text(colour = "black") | ||
) | ||
|
||
nsamps <- ncol(counts_mat) | ||
|
||
ggsave( | ||
p1, file = paste0('library_composition.png'), | ||
device = "png", | ||
width = 8, height = (nsamps/2.2), | ||
dpi = 300 | ||
) | ||
|
||
|
||
############################# | ||
## proportions plot | ||
############################# | ||
## get the proportions of reads per library | ||
# propCols <- (mergedDf[,c(3,13,14,5)] / mergedDf[,2]) | ||
|
||
propCols <- counts_summary[c( | ||
# "protein_coding", | ||
# "antisense_other", | ||
# "rRNA" | ||
all_biotypes | ||
)] / counts_summary$mapped | ||
|
||
propCols$sample <- counts_summary$sample | ||
|
||
# rowSums(propCols) ## each row should sum to 1 | ||
prop_melt <- melt( | ||
propCols, id.vars = c("sample"), | ||
measure.vars = c( | ||
# "protein_coding", | ||
# "antisense_other", | ||
# "rRNA" | ||
all_biotypes | ||
) | ||
) | ||
prop_melt$sample <- factor( | ||
prop_melt$sample, levels = rev(unique(sort(prop_melt$sample))) | ||
) | ||
prop_melt$variable <- factor(prop_melt$variable, levels=c( | ||
"rRNA", | ||
non_rRNA_btypes | ||
# "antisense_other", | ||
# "protein_coding" | ||
) | ||
) | ||
|
||
p2 <- ggplot(prop_melt, | ||
aes(x = sample, colour = variable, fill = variable, y = value) | ||
) + geom_bar(stat = "identity", width = 0.7) + | ||
coord_flip() + | ||
xlab("Sample") + ylab("Proportion of reads") + | ||
scale_fill_manual( | ||
"", | ||
values = ggCols, | ||
guide = guide_legend(reverse = TRUE) | ||
) + | ||
scale_colour_manual(values = ggCols, guide = FALSE) + | ||
scale_y_continuous(labels = comma) + | ||
theme_bw(base_size = cc1*1.3) + | ||
theme( | ||
legend.position="top", | ||
legend.text=element_text(size=cc1), | ||
axis.text.x = element_text(colour = "black"), | ||
axis.text.y = element_text(colour = "black") | ||
) | ||
|
||
ggsave( | ||
p2, file = 'library_composition_proportions.png', | ||
device = "png", | ||
width = 8, height = (nsamps/2.2), | ||
dpi = 300 | ||
) |
Oops, something went wrong.