forked from tomcat123a/-chanlun
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
804b68b
commit ba91a73
Showing
1 changed file
with
211 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,211 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Fri May 29 18:34:56 2020 | ||
@author: Administrator | ||
""" | ||
import pandas as pd | ||
import numpy as np | ||
import torch | ||
import os | ||
from torch.nn import Conv1d,BatchNorm1d, ModuleList ,Sequential,LSTM,GRU ,Sigmoid | ||
from torch.nn import AdaptiveMaxPool1d,AdaptiveAvgPool1d,Linear,BCELoss ,BCEWithLogitsLoss,MaxPool1d | ||
from torch.nn import ReLU,Dropout,AvgPool1d | ||
from torch.utils.data import Dataset,DataLoader,SubsetRandomSampler | ||
from resnet1d import BasicBlock,_resnet1d | ||
import argparse | ||
Parser=argparse.ArgumentParser() | ||
|
||
Parser.add_argument("--out_channels", type=int,default=10,help='chromosome numner,1-23') | ||
Parser.add_argument("--debug", type=int,default=0,help='1,debug==True,0,debug==False') | ||
Parser.add_argument("--l", type=int,default=1,help='1,days') | ||
Parser.add_argument("--T", type=int,default=1,help='minute intervals 1-30') | ||
parser=Parser.parse_args() | ||
class myDataset(Dataset): | ||
"""Face Landmarks dataset.""" | ||
|
||
def __init__(self, file_path='E:/1m_18/stockdata/spy_1min_20200522.csv' if os.name=='nt'\ | ||
else '../data/spy_1min_20200522.csv',l=1,T=10,\ | ||
standard=True,columns=['close']): | ||
assert columns | ||
""" | ||
Args: used | ||
l days | ||
columns :['open', 'high', 'low', 'close'] | ||
""" | ||
d=pd.read_csv(file_path,index_col=0) | ||
d.index=pd.to_datetime( d.index) | ||
self.d=d | ||
dayd=d.resample('1D',base=0,label='left',closed='right').agg({'open': 'first', | ||
'high': 'max', | ||
'low': 'min', | ||
'close': 'last'}).dropna() | ||
self.dayd=dayd | ||
self.daysused=l | ||
self.T=T | ||
self.standard=standard | ||
self.columns=columns | ||
dindex=dayd.index | ||
self.basicl=d.loc[np.logical_and( \ | ||
d.index < dindex[l],d.index>=dindex[0]) ].dropna().shape[0] | ||
def __len__(self): | ||
return self.dayd.shape[0]-self.daysused-1 | ||
|
||
def __getitem__(self, idx,debug=0): | ||
dindex=self.dayd.index | ||
d=self.d | ||
l=self.daysused | ||
minute=d.loc[ np.logical_and( \ | ||
d.index<dindex[idx+l] , d.index>=dindex[idx]) ].dropna() | ||
lastclose=minute['close'].iloc[-1] | ||
dayd=self.dayd | ||
T=self.T | ||
if minute.shape[0]<self.basicl: | ||
|
||
basicl=self.basicl | ||
m1=pd.DataFrame(\ | ||
minute.iloc[-1,-1]*np.ones((basicl-minute.shape[0],minute.shape[1]))) | ||
m1.columns=minute.columns | ||
minute=pd.concat((minute,m1 ),0) | ||
y=int( dayd.iloc[idx+l,1]/lastclose>1.007 ) | ||
|
||
x=minute[self.columns].values[::T].T | ||
if self.standard: | ||
zx=(x-np.mean(x))/np.std(x) | ||
else: | ||
zx=x | ||
if np.sum(np.isnan(zx.reshape(1,-1)))>0: | ||
print(zx) | ||
return torch.from_numpy(zx.astype(np.float32)) ,torch.tensor(y) | ||
|
||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | ||
|
||
|
||
dataset=myDataset(l=parser.l,T=parser.T,columns=['open', 'high', 'low', 'close']) | ||
|
||
|
||
#dataset.__getitem__(38) | ||
|
||
trainloader=DataLoader(dataset,batch_size=int(0.8*dataset.__len__())-1, sampler=\ | ||
SubsetRandomSampler(range(int(0.8*dataset.__len__()))),shuffle=False,drop_last=True) | ||
|
||
|
||
|
||
testloader=DataLoader(dataset,batch_size=dataset.__len__()-int(0.8*dataset.__len__() ), sampler=\ | ||
SubsetRandomSampler(range(int(0.8*dataset.__len__() ),\ | ||
dataset.__len__())),shuffle=False,drop_last=True) | ||
|
||
|
||
|
||
|
||
|
||
class cnnseq1(torch.nn.Module): #resnet | ||
def __init__(self,out_channels,kernel_size,stride,dilation): | ||
super(cnnseq, self).__init__() | ||
self.Conv=Conv1d(in_channels=1,out_channels=out_channels,\ | ||
kernel_size=kernel_size,\ | ||
stride=stride,padding=0,dilation=dilation) | ||
self.pool=AvgPool1d(kernel_size=5,stride=3) | ||
self.Conv2=Conv1d(in_channels=out_channels,\ | ||
out_channels=out_channels,kernel_size=3,stride=stride,dilation=dilation) | ||
self.act=ReLU() | ||
self.pool2=AvgPool1d(kernel_size=3,stride=2) | ||
self.linear=Linear(out_channels*4,1) | ||
self.sigm=Sigmoid() | ||
|
||
def forward(self, x ): | ||
|
||
x=self.act( self.Conv(x) ) | ||
x=self.pool(x) | ||
x= self.act( self.Conv2(x) ) | ||
x=self.pool2(x) | ||
|
||
x=self.sigm( self.linear(x.flatten(1,-1)).squeeze(-1) ) | ||
return x | ||
|
||
class cnnseq(torch.nn.Module): #resnet | ||
def __init__(self,out_channels,kernel_size,stride,dilation): | ||
super(cnnseq, self).__init__() | ||
self.l2=Sequential(Linear(130,100),ReLU() , \ | ||
Linear(100,20),ReLU() ,Linear(20,1)) | ||
self.l1= Sequential(Linear(130,40),ReLU() ,\ | ||
Linear(40,1) ) | ||
self.l0= Sequential(Linear(130,1)) | ||
self.act=Sigmoid() | ||
def forward(self, x ): | ||
x=x.squeeze(1) | ||
x2= self.l2(x).squeeze(-1) | ||
x1=self.l1(x).squeeze(-1) | ||
x0=self.l0(x).squeeze(-1) | ||
return self.act(x2+x1+x0) | ||
|
||
|
||
|
||
''' | ||
def evaluate(mod,trainloader,device): | ||
mod=mod.eval() | ||
for tx,ty in trainloader: | ||
tx=tx.to(device) | ||
ty=ty.to(device) | ||
out=mod(tx) | ||
real=trainy.cpu().data.numpy().astype(np.int32).reshape(-1) | ||
predclass= (out.cpu().data.numpy()>0.5).astype(np.int32) | ||
tp=len(np.where(np.logical_and(predclass==1,real==1))[0]) | ||
precision=tp/(1e-4+len(np.where(predclass==1)[0])) | ||
recall=tp/(1e-4+len(np.where(real==1)[0])) | ||
print('precision {:3f} recall {:3f} perctg {:3f}'.\ | ||
format(precision,recall,np.mean(real))) | ||
''' | ||
def evaluate1(mod,x,y,device,verbose=0): | ||
|
||
mod=mod.eval() | ||
|
||
|
||
out=mod(x) | ||
real=y.cpu().data.numpy().astype(np.int32).reshape(-1) | ||
predclass= (out.cpu().data.numpy()>0).astype(np.int32) | ||
tp=len(np.where(np.logical_and(predclass==1,real==1))[0]) | ||
precision=tp/(1e-4+len(np.where(predclass==1)[0])) | ||
recall=tp/(1e-4+len(np.where(real==1)[0])) | ||
if verbose==1: | ||
print('precision {:.4f} recall {:.4f} perctg {:.3f}'.\ | ||
format(precision,recall,np.mean(real))) | ||
|
||
for tx,ty in trainloader: | ||
trainx=tx.to(device) | ||
trainy=ty.to(device).float() | ||
import time | ||
|
||
for tx,ty in testloader: | ||
testx=tx.to(device) | ||
testy=ty.to(device).float() | ||
|
||
mod=_resnet1d('',block=BasicBlock,layers=[2,2]) | ||
def train1(mod,trainx,trainy,testx,testy,device,epoch): | ||
CEL=BCEWithLogitsLoss() | ||
|
||
optimizer=torch.optim.Adam(mod.parameters(), lr=0.1,amsgrad=True) | ||
for it in range(epoch): | ||
mod=mod.train() | ||
|
||
optimizer.zero_grad() | ||
out=mod(trainx).squeeze(1) | ||
assert out.size()==trainy.size() | ||
loss=CEL(out,trainy ) | ||
loss.backward() | ||
optimizer.step() | ||
#print('epoch{:.0f} done loss {:.4f}'.format(it,loss.cpu().data.numpy())) | ||
mod=mod.eval() | ||
print('train') | ||
evaluate1(mod,trainx,trainy,device,0) | ||
print('test') | ||
evaluate1(mod,testx,testy,device,0) | ||
t0=time.time() | ||
train1(mod,trainx,trainy,testx,testy,device,1000) | ||
print(time.time()-t0) | ||
evaluate1(mod,trainx,trainy,device) | ||
evaluate1(mod,testx,testy,device,1) | ||
mod(testx)>0.5 |