ViM.Presentation.mp4
Dataset source can be downloaded here.
- ImageNet. The ILSVRC 2012 dataset as In-distribution (ID) dataset. The training subset we used is this file.
- OpenImage-O. The OpenImage-O dataset is a subset of the OpenImage-V3 testing set. The filelist is here. Please refer to our paper of ViM for details of dataset construction.
- Texture. We rule out four classes that coincides with ImageNet. The filelist used in the paper is here.
- iNaturalist. Follow the instructions in the link to prepare the iNaturalist OOD dataset.
- ImageNet-O. Follow the guide to download the ImageNet-O OOD dataset.
mkdir data
cd data
ln -s /path/to/imagenet imagenet
ln -s /path/to/openimage_o openimage_o
ln -s /path/to/texture texture
ln -s /path/to/inaturalist inaturalist
ln -s /path/to/imagenet_o imagenet_o
cd ..
- install mmclassification
- download checkpoint
mkdir checkpoints cd checkpoints wget https://download.openmmlab.com/mmclassification/v0/vit/finetune/vit-base-p16_in21k-pre-3rdparty_ft-64xb64_in1k-384_20210928-98e8652b.pth cd ..
- extract features
./extract_feature_vit.py data/imagenet outputs/vit_imagenet_val.pkl --img_list datalists/imagenet2012_val_list.txt ./extract_feature_vit.py data/imagenet outputs/vit_train_200k.pkl --img_list datalists/imagenet2012_train_random_200k.txt ./extract_feature_vit.py data/openimage_o outputs/vit_openimage_o.pkl --img_list datalists/openimage_o.txt ./extract_feature_vit.py data/texture outputs/vit_texture.pkl --img_list datalists/texture.txt ./extract_feature_vit.py data/inaturalist outputs/vit_inaturalist.pkl ./extract_feature_vit.py data/imagenet_o outputs/vit_imagenet_o.pkl
- extract w and b in fc
./extract_feature_vit.py a b --fc_save_path outputs/vit_fc.pkl
- evaluation
./benchmark.py outputs/vit_fc.pkl outputs/vit_train_200k.pkl outputs/vit_imagenet_val.pkl outputs/vit_openimage_o.pkl outputs/vit_texture.pkl outputs/vit_inaturalist.pkl outputs/vit_imagenet_o.pkl
- download checkpoint
mkdir checkpoints cd checkpoints wget https://storage.googleapis.com/bit_models/BiT-S-R101x1.npz cd ..
- extract features
./extract_feature_bit.py data/imagenet outputs/bit_imagenet_val.pkl --img_list datalists/imagenet2012_val_list.txt ./extract_feature_bit.py data/imagenet outputs/bit_train_200k.pkl --img_list datalists/imagenet2012_train_random_200k.txt ./extract_feature_bit.py data/openimage_o outputs/bit_openimage_o.pkl --img_list datalists/openimage_o.txt ./extract_feature_bit.py data/texture outputs/bit_texture.pkl --img_list datalists/texture.txt ./extract_feature_bit.py data/inaturalist outputs/bit_inaturalist.pkl ./extract_feature_bit.py data/imagenet_o outputs/bit_imagenet_o.pkl
- extract w and b in fc
./extract_feature_bit.py a b --fc_save_path outputs/bit_fc.pkl
- evaluation
./benchmark.py outputs/bit_fc.pkl outputs/bit_train_200k.pkl outputs/bit_imagenet_val.pkl outputs/bit_openimage_o.pkl outputs/bit_texture.pkl outputs/bit_inaturalist.pkl outputs/bit_imagenet_o.pkl
- extract features, use repvgg_b3, resnet50d, swin, deit as model
# choose one of them export MODEL=repvgg_b3 && export NAME=repvgg export MODEL=resnet50d && export NAME=resnet50d export MODEL=swin_base_patch4_window7_224 && export NAME=swin export MODEL=deit_base_patch16_224 && export NAME=deit ./extract_feature_timm.py data/imagenet outputs/${NAME}_imagenet_val.pkl ${MODEL} --img_list datalists/imagenet2012_val_list.txt ./extract_feature_timm.py data/imagenet outputs/${NAME}_train_200k.pkl ${MODEL} --img_list datalists/imagenet2012_train_random_200k.txt ./extract_feature_timm.py data/openimage_o outputs/${NAME}_openimage_o.pkl ${MODEL} --img_list datalists/openimage_o.txt ./extract_feature_timm.py data/texture outputs/${NAME}_texture.pkl ${MODEL} --img_list datalists/texture.txt ./extract_feature_timm.py data/inaturalist outputs/${NAME}_inaturalist.pkl ${MODEL} ./extract_feature_timm.py data/imagenet_o outputs/${NAME}_imagenet_o.pkl ${MODEL}
- extract w and b in fc
./extract_feature_timm.py a b ${MODEL} --fc_save_path outputs/${NAME}_fc.pkl
- evaluation
./benchmark.py outputs/${NAME}_fc.pkl outputs/${NAME}_train_200k.pkl outputs/${NAME}_imagenet_val.pkl outputs/${NAME}_openimage_o.pkl outputs/${NAME}_texture.pkl outputs/${NAME}_inaturalist.pkl outputs/${NAME}_imagenet_o.pkl
Note: To reproduce ODIN baseline, please refer to this repo.
@inproceedings{haoqi2022vim,
title = {ViM: Out-Of-Distribution with Virtual-logit Matching},
author = {Wang, Haoqi and Li, Zhizhong and Feng, Litong and Zhang, Wayne},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year = {2022}
}
Part of the code is modified from MOS repo.