- Model Conceptualization
- Data Preparation
- Model Implementation
- Training Process
- Evaluation and Fine-tuning
- Multi-modal Capabilities
- API Development
- User Interface
- Turing Test Challenge
- Deployment and Scaling
- Continuous Improvement
- Ethical Considerations and Bias Mitigation
- Performance Optimization
- Robustness and Security
- Advanced Capabilities and Evaluation Suite
For this guide, we'll name our SLM "CompactLM".
CompactLM is designed for efficient natural language understanding and generation in resource-constrained environments. It targets general-purpose text processing with a focus on conversational AI and text summarization.
We'll use a transformer-based architecture, specifically a compact version of BERT, optimized for smaller size and faster inference.
Use cases:
- Chatbots for customer service
- Text summarization for mobile devices
- Sentiment analysis for social media monitoring
Limitations:
- Limited context window (512 tokens)
- Reduced accuracy compared to larger models
- Limited multilingual capabilities
CompactLM prioritizes efficiency and low resource usage over raw performance. It aims to achieve 80% of the performance of larger models while using only 10% of the parameters.
Advantages of CompactLM:
- Faster inference times
- Lower memory footprint
- Easier deployment on edge devices
Challenges:
- Reduced accuracy on complex tasks
- Limited knowledge base
- Potential for more frequent hallucinations
For this guide, we'll use a combination of publicly available datasets:
- Wikipedia articles for general knowledge
- OpenSubtitles for conversational data
- CNN/Daily Mail dataset for summarization tasks
Here's a Python script to preprocess and clean the data:
import pandas as pd
import re
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
def clean_text(text):
# Convert to lowercase
text = text.lower()
# Remove special characters and digits
text = re.sub(r'[^a-zA-Z\s]', '', text)
# Tokenize
tokens = word_tokenize(text)
# Remove stopwords
stop_words = set(stopwords.words('english'))
tokens = [token for token in tokens if token not in stop_words]
# Join tokens back into text
return ' '.join(tokens)
def preprocess_dataset(file_path):
df = pd.read_csv(file_path)
df['cleaned_text'] = df['text'].apply(clean_text)
return df
# Usage
preprocessed_data = preprocess_dataset('raw_data.csv')
preprocessed_data.to_csv('preprocessed_data.csv', index=False)
from sklearn.model_selection import train_test_split
train_data, temp_data = train_test_split(preprocessed_data, test_size=0.3, random_state=42)
val_data, test_data = train_test_split(temp_data, test_size=0.5, random_state=42)
train_data.to_csv('train_data.csv', index=False)
val_data.to_csv('val_data.csv', index=False)
test_data.to_csv('test_data.csv', index=False)
import nlpaug.augmenter.word as naw
def augment_data(text):
# Synonym replacement
aug_syn = naw.SynonymAug(aug_p=0.1)
text_syn = aug_syn.augment(text)
# Random insertion
aug_ins = naw.RandomWordAug(action="insert", aug_p=0.1)
text_ins = aug_ins.augment(text_syn)
return text_ins
train_data['augmented_text'] = train_data['cleaned_text'].apply(augment_data)
Analyze the dataset for diversity:
import matplotlib.pyplot as plt
def plot_data_distribution(data, column, title):
plt.figure(figsize=(10, 6))
data[column].value_counts().plot(kind='bar')
plt.title(title)
plt.xlabel(column)
plt.ylabel('Count')
plt.show()
plot_data_distribution(train_data, 'category', 'Distribution of Categories in Training Data')
Implement a bias detection and mitigation pipeline:
from aif360.datasets import BinaryLabelDataset
from aif360.metrics import BinaryLabelDatasetMetric
def detect_bias(data, protected_attribute, label_column):
dataset = BinaryLabelDataset(df=data,
label_names=[label_column],
protected_attribute_names=[protected_attribute])
metric = BinaryLabelDatasetMetric(dataset,
unprivileged_groups=[{protected_attribute: 0}],
privileged_groups=[{protected_attribute: 1}])
print(f"Disparate Impact: {metric.disparate_impact()}")
print(f"Statistical Parity Difference: {metric.statistical_parity_difference()}")
# Usage
detect_bias(train_data, 'gender', 'sentiment')
Use DVC (Data Version Control) for versioning:
dvc init
dvc add data/
git add data.dvc .gitignore
git commit -m "Add raw data"
dvc push
python -m venv slm_env
source slm_env/bin/activate
pip install torch transformers datasets
Here's a simplified implementation of CompactLM using PyTorch and Hugging Face Transformers:
import torch
import torch.nn as nn
from transformers import BertConfig, BertForMaskedLM
class CompactLM(nn.Module):
def __init__(self, vocab_size, hidden_size=256, num_hidden_layers=6, num_attention_heads=4):
super(CompactLM, self).__init__()
self.config = BertConfig(
vocab_size=vocab_size,
hidden_size=hidden_size,
num_hidden_layers=num_hidden_layers,
num_attention_heads=num_attention_heads,
intermediate_size=hidden_size * 4
)
self.model = BertForMaskedLM(self.config)
def forward(self, input_ids, attention_mask=None, labels=None):
return self.model(input_ids, attention_mask=attention_mask, labels=labels)
# Usage
vocab_size = 30522 # Default BERT vocab size
model = CompactLM(vocab_size)
The weights are automatically initialized by the Hugging Face Transformers library. However, you can implement custom initialization if needed:
def init_weights(module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
model.apply(init_weights)
These are already implemented in the BERT architecture we're using. For a custom implementation, you could do:
class SelfAttention(nn.Module):
def __init__(self, hidden_size, num_attention_heads):
super(SelfAttention, self).__init__()
self.num_attention_heads = num_attention_heads
self.attention_head_size = hidden_size // num_attention_heads
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(hidden_size, self.all_head_size)
self.key = nn.Linear(hidden_size, self.all_head_size)
self.value = nn.Linear(hidden_size, self.all_head_size)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask=None):
query_layer = self.transpose_for_scores(self.query(hidden_states))
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
attention_probs = nn.Softmax(dim=-1)(attention_scores)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
For language modeling tasks, we typically use Cross-Entropy Loss. However, for specific tasks, you might want to implement custom loss functions:
class FocalLoss(nn.Module):
def __init__(self, alpha=1, gamma=2):
super(FocalLoss, self).__init__()
self.alpha = alpha
self.gamma = gamma
def forward(self, inputs, targets):
ce_loss = nn.CrossEntropyLoss(reduction='none')(inputs, targets)
pt = torch.exp(-ce_loss)
focal_loss = self.alpha * (1-pt)**self.gamma * ce_loss
return focal_loss.mean()
# Usage
criterion = FocalLoss()
Implement knowledge distillation:
from transformers import BertForMaskedLM
class DistillationLoss(nn.Module):
def __init__(self, temperature=2.0):
super(DistillationLoss, self).__init__()
self.temperature = temperature
self.kl_div = nn.KLDivLoss(reduction="batchmean")
def forward(self, student_logits, teacher_logits, labels):
soft_targets = nn.functional.softmax(teacher_logits / self.temperature, dim=-1)
soft_prob = nn.functional.log_softmax(student_logits / self.temperature, dim=-1)
distillation_loss = self.kl_div(soft_prob, soft_targets) * (self.temperature ** 2)
student_loss = nn.CrossEntropyLoss()(student_logits, labels)
return 0.5 * (distillation_loss + student_loss)
# Load pre-trained teacher model
teacher_model = BertForMaskedLM.from_pretrained('bert-base-uncased')
student_model = CompactLM(vocab_size)
distillation_criterion = DistillationLoss()
Use the Hugging Face Tokenizers library for efficient tokenization:
from transformers import BertTokenizerFast
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
def tokenize_function(examples):
return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=512)
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
This completes the first three sections of the guide. The subsequent sections would follow a similar pattern, providing detailed explanations, code snippets, and best practices for each step in the SLM development process.