-
Notifications
You must be signed in to change notification settings - Fork 87
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Added new initil assumptions with boostings #1359
base: master
Are you sure you want to change the base?
Conversation
Hello @dmitryglhf! Thanks for updating this PR. We checked the lines you've touched for PEP 8 issues, and found: There are currently no PEP 8 issues detected in this Pull Request. Cheers! 🍻 Comment last updated at 2025-01-23 15:41:19 UTC |
/fix-pep8 |
All PEP8 errors has been fixed, thanks ❤️ Comment last updated at Sat, 01 Feb 2025 13:37:30 |
Discovered three most useful assumptions.
Pipelines and full comparison tableFull comparison table: full_comparison.xlsx Full tables for each pipeline: |
…FEDOT into new-initial-assumptions
Codecov ReportAll modified and coverable lines are covered by tests ✅
Additional details and impacted files@@ Coverage Diff @@
## master #1359 +/- ##
==========================================
+ Coverage 80.17% 80.69% +0.52%
==========================================
Files 146 146
Lines 10515 10515
==========================================
+ Hits 8430 8485 +55
+ Misses 2085 2030 -55 ☔ View full report in Codecov by Sentry. |
@nicl-nno Среди трех начальных приближений стоит оставить все или же только то, которое улучшает метрики больше остальных? |
Зависит от того, меняется ли лидер при смене группы датасетов. Если везде +-один вариант доминирует - то можно его иоставить. |
Looks like FEDOT mostly choosing and modifying DetailsBinary classification: binary_class_datasets = [
'blood-transf.arff.csv', 'christine.arff.csv', 'jasmine.arff.csv',
'phoneme.arff.csv', 'sylvine.arff.csv',
] Multiclass classification: multi_class_datasets = [
'car.arff.csv', 'cnae-9.arff.csv', 'dilbert.arff.csv', 'fabert.arff.csv',
'mfeat-factors.arff.csv', 'segment.arff.csv', 'vehicle.arff.csv'
] Regression: regression_datasets = [
'analcatdata_negotiation.arff.csv', 'bodyfat.arff.csv', 'cleveland.arff.csv',
'cloud.arff.csv', 'kin8nm.arff.csv', 'liver-disorders.arff.csv'
] |
А это хорошо или плохо? |
Это промежуточное сообщение, чтобы не потерять результаты, хотел по нему задать вопрос.
|
This is a 🔨 code refactoring.
Summary
New Initial Assumptions: Updated initial assumptions by adding boosting-based solutions (CatBoost, XGBoost, LightGBM).
Comparison table between old and new assumptions (validated on automlbenchmark small dataset 1h8c):
Context
Closes #1341