Skip to content

Commit

Permalink
Fix some pep8 issues
Browse files Browse the repository at this point in the history
  • Loading branch information
Nunkyl committed Mar 21, 2024
1 parent e063932 commit 62149fe
Show file tree
Hide file tree
Showing 4 changed files with 11 additions and 11 deletions.
4 changes: 2 additions & 2 deletions golem/core/optimisers/genetic/gp_optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,8 @@ def __init__(self,
self.elitism = Elitism(graph_optimizer_params)
self.operators = [self.regularization, self.selection, self.crossover,
self.mutation, self.inheritance, self.elitism]
self.reproducer = ReproductionController(graph_optimizer_params, self.selection, self.mutation, self.crossover)
self.reproducer = ReproductionController(graph_optimizer_params, self.selection, self.mutation,
self.crossover)

# Define adaptive parameters
self._pop_size: PopulationSize = init_adaptive_pop_size(graph_optimizer_params, self.generations)
Expand All @@ -70,7 +71,6 @@ def __init__(self,
self.initial_individuals = [Individual(graph, metadata=requirements.static_individual_metadata)
for graph in self.initial_graphs]


def _initial_population(self, evaluator: EvaluationOperator):
""" Initializes the initial population """
# Adding of initial assumptions to history as zero generation
Expand Down
3 changes: 1 addition & 2 deletions golem/core/optimisers/optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -136,6 +136,7 @@ def __init__(self,

self._saved_state_path = saved_state_path
self._run_id = str(uuid.uuid1())

@property
def objective(self) -> Objective:
"""Returns Objective of this optimizer with information about metrics used."""
Expand Down Expand Up @@ -180,7 +181,6 @@ def _progressbar(self):
bar = EmptyProgressBar()
return bar


def save(self, saved_state_path):
"""
Method for serializing and saving a class object to a file using the dill library
Expand All @@ -201,7 +201,6 @@ def load(self, saved_state_path):
with open(saved_state_path, 'rb') as f:
self.__dict__.update(pickle.load(f))


def _find_latest_dir(self, directory: str) -> str:
return max([os.path.join(directory, d) for d in os.listdir(directory) if os.path.isdir(
os.path.join(directory, d))], key=os.path.getmtime)
Expand Down
4 changes: 2 additions & 2 deletions golem/core/optimisers/populational_optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -97,8 +97,8 @@ def __init__(self,
self.generations = GenerationKeeper(self.objective, keep_n_best=requirements.keep_n_best)
self.timer = OptimisationTimer(timeout=self.requirements.timeout)

dispatcher_type = MultiprocessingDispatcher if self.requirements.parallelization_mode == 'populational' else \
SequentialDispatcher
dispatcher_type = MultiprocessingDispatcher if self.requirements.parallelization_mode == 'populational' \
else SequentialDispatcher

self.eval_dispatcher = dispatcher_type(adapter=graph_generation_params.adapter,
n_jobs=requirements.n_jobs,
Expand Down
11 changes: 6 additions & 5 deletions test/integration/test_saved_state.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
def find_latest_file_in_dir(directory: str) -> str:
return max(glob.glob(os.path.join(directory, '*')), key=os.path.getmtime)


def test_saved_state():
# Set params
size = 16
Expand All @@ -34,7 +35,7 @@ def test_saved_state():

# Setup optimization parameters
requirements_run_1 = GraphRequirements(timeout=timedelta(minutes=timeout),
num_of_generations=num_of_generations_run_1)
num_of_generations=num_of_generations_run_1)
requirements_run_2 = GraphRequirements(timeout=timedelta(minutes=timeout),
num_of_generations=num_of_generations_run_2)

Expand All @@ -43,7 +44,7 @@ def test_saved_state():

# Build and run the optimizer to create a saved state file
optimiser1 = EvoGraphOptimizer(objective, initial_population, requirements_run_1, gen_params, algo_params,
saved_state_path=saved_state_path)
saved_state_path=saved_state_path)
st = time.time()
optimiser1.optimise(objective, save_state_delta=1)
et = time.time()
Expand All @@ -56,16 +57,16 @@ def test_saved_state():

# Create the optimizer to check that the saved state was used
optimiser2 = EvoGraphOptimizer(objective, initial_population, requirements_run_2, gen_params, algo_params,
use_saved_state=True, saved_state_path=saved_state_path)
use_saved_state=True, saved_state_path=saved_state_path)

# Check that the restored object has the same main parameters as the original or at least the params are not empty
assert optimiser1.current_generation_num == optimiser2.current_generation_num + 1, \
f'ERROR: Restored object field \'current_generation_num\' has wrong value: {optimiser2.current_generation_num}'
assert optimiser1.generations.stagnation_iter_count == optimiser2.generations.stagnation_iter_count + 1, \
f'ERROR: Restored object field \'generations.stagnation_iter_count\' has wrong value: ' \
f'{optimiser2.generations.stagnation_iter_count}'
assert optimiser1.best_individuals != [], f'ERROR: Restored object field \'best_individuals\' is empty'
assert optimiser1.population is not None, f'ERROR: Restored object field \'population\' is empty'
assert optimiser1.best_individuals != [], 'ERROR: Restored object field \'best_individuals\' is empty'
assert optimiser1.population is not None, 'ERROR: Restored object field \'population\' is empty'
assert optimiser1.timer.timeout > optimiser2.timer.timeout, 'ERROR: timeout was not adjusted correctly'

st = time.time()
Expand Down

0 comments on commit 62149fe

Please sign in to comment.