A multi-stream network based on graph k-NN for hyperspectral point cloud segmentation in geological application. Find our paper here.

Download Tinto data from RODARE.
First preprocess data:
python gen_h5.py
Then train and test:
python train.py
python test.py
Return prediction points with correct coordinates:
python return_coords.py
Cite the paper here:
Rizaldy, A.; Afifi, A.J.; Ghamisi, P.; Gloaguen, R. Improving Mineral Classification Using Multimodal Hyperspectral Point Cloud Data and Multi-Stream Neural Network. Remote Sens. 2024, 16, 2336. https://doi.org/10.3390/rs16132336