Skip to content

aldinorizaldy/HyperspectralGraphNetwork

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HyperspectralGraphNetwork

A multi-stream network based on graph k-NN for hyperspectral point cloud segmentation in geological application. Find our paper here.

GraphicalAbstract

Screenshot 2024-11-09 at 03 20 44

Download Tinto data from RODARE.

First preprocess data:

python gen_h5.py

Then train and test:

python train.py
python test.py

Return prediction points with correct coordinates:

python return_coords.py

Cite the paper here:

Rizaldy, A.; Afifi, A.J.; Ghamisi, P.; Gloaguen, R. Improving Mineral Classification Using Multimodal Hyperspectral Point Cloud Data and Multi-Stream Neural Network. Remote Sens. 2024, 16, 2336. https://doi.org/10.3390/rs16132336

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages