Skip to content

Commit

Permalink
More blueprint but only very sketchy.
Browse files Browse the repository at this point in the history
  • Loading branch information
kkytola committed Jul 14, 2024
1 parent 52fe395 commit 7245c49
Show file tree
Hide file tree
Showing 8 changed files with 211 additions and 66 deletions.
54 changes: 51 additions & 3 deletions blueprint/src/Green_Fourier.tex
Original file line number Diff line number Diff line change
Expand Up @@ -20,26 +20,74 @@ \section{Fourier transform of the regularized Green's function}

\section{Explicit formula for the Fourier transform}

\begin{lemma}
\label{lem:Markovian_Green_Fourier}
\uses{def:Green_Fourier_transf, def:iid_random_walk}
For a time-homogeneous random walk $\RW = \big(\RW(t)\big)_{t \in \bN}$ on $\bZ^d$
with step distribution $p \colon \bZ^d \to [0,1]$,
the Fourier transform of the Green's function is
\begin{align*}
\Freg{r} (\theta) = \Big(1 - r \sum_{u\in \bZ^d} p(u) e^{\ii u \cdot \theta}\Big)^{-1} .
\end{align*}
\end{lemma}
\begin{proof}
\ldots
\end{proof}

\begin{lemma}
\label{lem:SRW_Green_Fourier}
\uses{def:Green_Fourier_transf, def:simple_random_walk}
For the simple random walk $\RW = \big(\RW(t)\big)_{t \in \bN}$ on $\bZ^d$,
the Fourier transform of the Green's function is
\begin{align*}
\Freg{r} (\theta) = \frac{1}{1-\frac{r}{d} \sum_{j=1}^d \cos(\theta_j)} .
\end{align*}
\end{lemma}
\begin{proof}
\uses{lem:Markovian_Green_Fourier}
\ldots
\end{proof}

\section{Inversion of the discrete Fourier transform}

\begin{lemma}
\label{lem:Green_Fourier_inverse}
\uses{def:Green_Fourier_transf}
For any $x \in \bZ^d$ and $0 \le r < 1$, we have
\begin{align*}
\Greg{r} (\theta)
= \frac{1}{(2\pi)^d} \iint_{\Fbox} e^{-\ii x \cdot \theta} \, \Freg{r} (\theta) \, \ud^d \theta .
\Greg{r} (x)
= \frac{1}{(2\pi)^d} \iint_{\Fbox} e^{-\ii x \cdot \theta} \, \Freg{r} (\theta) \; \ud^d \theta .
\end{align*}
\end{lemma}
\begin{proof}
\uses{lem:sum_Green_function}
\ldots
\end{proof}

Recall that we are interested in $\EX[L]$, where $L$ is the number of visits to the
origin by the random walk. Lemma~\ref{lem:Green_function_nonregularized_limit}
states that $\EX[L]$ is the increasing limit of $\Greg{r}(\vec{0})$ as $r \nearrow 1$,
and Lemma~\ref{lem:Green_Fourier_inverse} gives a formula for $\Greg{r}(\vec{0})$
in terms of the Fourier transform.
as the integral of the Fourier transform: $\Greg{r}(\vec{0}) = \frac{1}{(2\pi)^d} I_r$,
where
\begin{align}
I_r = \iint_{\Fbox} \Freg{r} (\theta) \; \ud^d \theta .
\end{align}

\begin{corollary}
\label{cor:recurrence_iff_finite_limit_integral}
\uses{def:expectation_recurrence, def:Green_Fourier_transf}
A random walk $\RW = \big(\RW(t)\big)_{t \in \bN}$ on $\bZ^d$
is expectation recurrent if and only if $\lim_{r \nearrow 1} \, I_r = +\infty$.
In other words, $\RW$ is expectation transient if and only if
$\lim_{r \nearrow 1} \, I_r \, < \, +\infty$.
\end{corollary}
\begin{proof}
\uses{lem:Green_Fourier_inverse, lem:Green_function_nonregularized_limit}
\ldots
\end{proof}



% This allows to express the
% \begin{corollary}
Expand Down
1 change: 1 addition & 0 deletions blueprint/src/content.tex
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
%\newtheorem{theorem}{Theorem}

\input{overview.tex}
\input{random_walk.tex}
\input{recurrence_and_transience.tex}
\input{occupation.tex}
\input{Green_Fourier.tex}
Expand Down
72 changes: 72 additions & 0 deletions blueprint/src/integral_manipulation.tex
Original file line number Diff line number Diff line change
@@ -1,9 +1,81 @@
\chapter{Treatment of the integral in the Fourier inversion}

In this part, we analyze the integral
\begin{align}
I_r = \iint_{\Fbox} \Freg{r} (\theta) \; \ud^d \theta ,
\end{align}
where $\Freg{r} \colon \bR^d \to \bC$ is the Fourier transform of the
regularized Green's function of a random walk $\RW$ on $\bZ^d$. By
Corollary~\ref{cor:recurrence_iff_finite_limit_integral}, the finiteness
of this integral in the limit $r \nearrow 1$ characterizes expectation
transience of $\RW$.

\section{Decomposition of the integral}

\begin{lemma}
\label{lem:integral_decomposition}
\uses{def:Green_Fourier_transf}
For any $0 < \delta \le \pi$ we can write
\begin{align*}
I_r = J_r^{(\delta)} + K_r^{(\delta)},
\end{align*}
where the two parts are
\begin{align}
J_r^{(\delta)} = \; & \iint_{\Fbox \setminus B_\delta} \Freg{r} (\theta) \; \ud^d \theta \\
K_r^{(\delta)} = \; & \iint_{B_\delta} \Freg{r} (\theta) \; \ud^d \theta ,
\end{align}
where $B_\delta := \set{ \theta \in \bR^d \, \big| \, \|\theta\| < \delta}$ is the
ball of radius $\delta$ centered at $\vec{0} \in \bR^d$.
\end{lemma}
\begin{proof}
Obvious, since $\Fbox = (\Fbox \setminus B_\delta) \cup B_\delta$
is a disjoint union.
\end{proof}


\section{Dominated convergence away from the origin}

TODO: Define non-degenerate step distribution (essentially $\sum_{u\in \bZ^d} p(u) e^{\ii u \cdot \theta} \ne 1$ for $\theta \ne 0$ modulo periodicity).

\begin{lemma}
\label{lem:integral_away}
\uses{lem:integral_decomposition}
If $\RW$ is a time-homogeneous Markovian random walk with suitable
non-degeneracy conditions on its step distribution (to be written down more precisely),
then for any $0 < \delta \le \pi$ the limit
\begin{align*}
\lim_{r \nearrow 1} J_r^{(\delta)}
\end{align*}
exists and is finite (limit in $\bR$).
\end{lemma}
\begin{proof}
Under the nondegeneracy conditions, on the compact set $\Fbox \setminus B_\delta$,
the continuous integrand $\theta \mapsto \Freg{r}(\theta)$
is bounded (and therefore dominated by a constant function) and
it has the pointwise limit $\lim_{r \nearrow 1} \Freg{r}(\theta) = \Freg{1}(\theta)$.
It therefore follows from the dominated convergence theorem
that $\lim_{r \nearrow 1} J_r^{(\delta)} = J_1^{(\delta)} \in \bR$.
\end{proof}

\section{Monotone convergence near the origin}

TODO: Think about the best conditions for step distribution under which monotone convergence can be applied (real-valuedness requires symmetricity of the step-distribution?!?).

\begin{lemma}
\label{lem:integral_near}
\uses{lem:integral_decomposition}
If $\RW$ is a time-homogeneous Markovian random walk with suitable
symmetricity and integrability conditions on its step distribution (to be written down more precisely),
then there exists a $\delta_0 > 0$ such that for any $0 < \delta \le \delta_0$, the limit
\begin{align*}
\lim_{r \nearrow 1} K_r^{(\delta)}
\end{align*}
is increasing and exists in $[0,+\infty]$.
\end{lemma}
\begin{proof}
\ldots
\end{proof}


\section{Characterizing finiteness of the integral}

2 changes: 1 addition & 1 deletion blueprint/src/macros/common.tex
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@
\newcommand{\Greg}[1]{\G_{#1}}
\newcommand{\F}{\widehat{\G}}
\newcommand{\Freg}[1]{\F_{#1}}
\newcommand{\Fbox}{(-\pi,\pi]^d}
\newcommand{\Fbox}{[-\pi,\pi]^d}

\newcommand{\walk}{\mathfrak{w}}
\newcommand{\RW}{X}
Expand Down
60 changes: 1 addition & 59 deletions blueprint/src/occupation.tex
Original file line number Diff line number Diff line change
@@ -1,62 +1,4 @@
\chapter{Random walks and their occupations}



\section{Random walks on the $d$-dimensional integer grid}

\begin{definition}
\label{def:grid}
\lean{Grid}
\leanok
The $d$-dimensional integer \textbf{grid} is $\bZ^d$.
\end{definition}

A walk on the grid $\bZ^d$ is a function
$\walk \colon \bN \to \bZ^d$, denoted $t \mapsto \walk(t)$).
We construct walks from their sequences of steps as follows:

\begin{definition}
\label{def:walk}
\lean{deftest}
\uses{def:grid}
\leanok
A sequence $(u_s)_{s \in \bN}$ of steps in $\bZ^d$
determines a \textbf{walk} $\walk \colon \bN \to \bZ^d$ by
\begin{align}\label{eq: RW def}
\walk(t) = \sum_{0 \le s < t} u_s .
\end{align}
\end{definition}

A random walk is constructed from a sequence of random steps.

\begin{definition}
\label{def:random_walk}
\uses{def:walk}
\lean{RW}
\leanok
A sequence $(\xi_s)_{s \in \bN}$ of $\bZ^d$-valued
random variables (on some a probability space)
determines a \textbf{random walk} $\RW = \big(\RW(t)\big)_{t \in \bN}$ by
\[ \RW(t) = \sum_{0 \le s < t} \xi_s . \]
\end{definition}

\begin{lemma}
\label{lem:RW_mble}
\uses{def:random_walk}
\lean{RW.measurable}
The position $\RW(t)$ of a
random walk $\RW = \big(\RW(t)\big)_{t \in \bN}$
at any time $t \in \bN$ is a $\bZ^d$-valued random variable.
\end{lemma}
\begin{proof}
We must prove that $\RW(t) \colon \Omega \to \bZ^d$ is measurable.
Since each of the steps $\xi_s \colon \Omega \to \bZ^d$ is measurable by
assumption and the position of the
random walk is defined in~\eqref{eq: RW def} by summing the
first $t$ steps, the measurability follows by induction
on $t$ using the fact that sums of measurable $\bZ^d$-valued
functions are measurable.
\end{proof}
\chapter{Occupations and Green's functions of random walks}



Expand Down
2 changes: 1 addition & 1 deletion blueprint/src/overview.tex
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,6 @@ \chapter{P\'olya's theorem}
% on the $d$-dimensional grid $\bZ^d$.
\end{theorem}
\begin{proof}
\uses{lem:Green_function_nonregularized_limit}
\uses{lem:recurrence_iff_finite_limit_integral, lem:SRW_Green_Fourier, lem:integral_near, lem:integral_away, cor:recurrence_iff_finite_limit_integral}
\ldots
\end{proof}
82 changes: 82 additions & 0 deletions blueprint/src/random_walk.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
\chapter{Random walks}



\section{Random walks on the $d$-dimensional integer grid}

\begin{definition}
\label{def:grid}
\lean{Grid}
\leanok
The $d$-dimensional integer \textbf{grid} is $\bZ^d$.
\end{definition}

A walk on the grid $\bZ^d$ is a function
$\walk \colon \bN \to \bZ^d$, denoted $t \mapsto \walk(t)$).
We construct walks from their sequences of steps as follows:

\begin{definition}
\label{def:walk}
\lean{deftest}
\uses{def:grid}
\leanok
A sequence $(u_s)_{s \in \bN}$ of steps in $\bZ^d$
determines a \textbf{walk} $\walk \colon \bN \to \bZ^d$ by
\begin{align}\label{eq: RW def}
\walk(t) = \sum_{0 \le s < t} u_s .
\end{align}
\end{definition}

A random walk is constructed from a sequence of random steps.

\begin{definition}
\label{def:random_walk}
\uses{def:walk}
\lean{RW}
\leanok
A sequence $(\xi_s)_{s \in \bN}$ of $\bZ^d$-valued
random variables (on some a probability space)
determines a \textbf{random walk} $\RW = \big(\RW(t)\big)_{t \in \bN}$ by
\[ \RW(t) = \sum_{0 \le s < t} \xi_s . \]
\end{definition}

\begin{lemma}
\label{lem:RW_mble}
\uses{def:random_walk}
\lean{RW.measurable}
The position $\RW(t)$ of a
random walk $\RW = \big(\RW(t)\big)_{t \in \bN}$
at any time $t \in \bN$ is a $\bZ^d$-valued random variable.
\end{lemma}
\begin{proof}
We must prove that $\RW(t) \colon \Omega \to \bZ^d$ is measurable.
Since each of the steps $\xi_s \colon \Omega \to \bZ^d$ is measurable by
assumption and the position of the
random walk is defined in~\eqref{eq: RW def} by summing the
first $t$ steps, the measurability follows by induction
on $t$ using the fact that sums of measurable $\bZ^d$-valued
functions are measurable.
\end{proof}

\begin{definition}
\label{def:iid_random_walk}
\uses{def:random_walk}
A random walk $\RW = \big(\RW(t)\big)_{t \in \bN}$ on $\bZ^d$
said to be \textbf{time-homogeneous Markovian} if its
steps $\big(\RW(t+1) - \RW(t)\big)_{t \in \bN}$
are independent and identically distributed.
\end{definition}

\begin{definition}
\label{def:simple_random_walk}
\uses{def:iid_random_walk}
A random walk $\RW = \big(\RW(t)\big)_{t \in \bN}$ on $\bZ^d$
is \textbf{simple} if it is time-homogeneous Markovian and its
steps are uniformly distributed on nearest neighbors on the grid:
\begin{align*}
\PR \big[ \RW(t+1) - \RW(t) = u \big] = \begin{cases}
\frac{1}{2d} & \text{ if } \|u\| = 1 \\
0 & \text{ otherwise.}
\end{cases}
\end{align*}
\end{definition}
4 changes: 2 additions & 2 deletions blueprint/src/recurrence_and_transience.tex
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,7 @@ \section{Equivalent conditions}

\begin{lemma}
\label{lem:recurrent_iff_expectation_recurrent}
\uses{def:recurrence, def:expectation_recurrence}
\uses{def:recurrence, def:expectation_recurrence, def:iid_random_walk}
A Markovian random walk $\RW = \big(\RW(t)\big)_{t \in \bN}$ is recurrent
%(in the sense of Definition~\ref{def:recurrence})
if and only if it is
Expand All @@ -76,7 +76,7 @@ \section{Equivalent conditions}

\begin{lemma}
\label{lem:recurrent_iff_return_recurrent}
\uses{def:recurrence, def:Markovian_recurrence}
\uses{def:recurrence, def:Markovian_recurrence, def:iid_random_walk}
A Markovian random walk $\RW = \big(\RW(t)\big)_{t \in \bN}$ is recurrent
%(in the sense of Definition~\ref{def:recurrence})
if and only if it is
Expand Down

0 comments on commit 7245c49

Please sign in to comment.