-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
22 changed files
with
4,799 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
TARGET := eigvecs | ||
|
||
# Select compiler and linker: intel, gnu, clang | ||
COMPILER := gnu | ||
|
||
# Set global defines | ||
DEFINES := -DNDEBUG -DALIGNMENT=64 | ||
|
||
# Define dynamically linked libraries | ||
LIBS := -lrt -lm | ||
|
||
# ------------------------------------------------------------------------------ | ||
# Selection of flags | ||
# ------------------------------------------------------------------------------ | ||
|
||
ifeq ($(COMPILER), intel) | ||
CC := icc | ||
CFLAGS := -Wall -std=gnu99 -O2 -mtune=skylake-avx512 -malign-double -qopt-prefetch -qopenmp -ipo | ||
LDFLAGS := -O2 -ipo -qopenmp | ||
LIBS += -mkl | ||
else ifeq ($(COMPILER), clang) | ||
CC := clang | ||
CFLAGS := -Wall -Werror=implicit-function-declaration -O3 -std=gnu99 -pipe -fopenmp | ||
LDFLAGS := -flto -O3 -fopenmp -g | ||
LIBS += -lopenblas -fopenmp | ||
else # gnu | ||
CC := gcc | ||
CFLAGS := -std=gnu99 -O3 -march=native -funroll-loops -fprefetch-loop-arrays -malign-double -LNO:prefetch -g -pipe -fopenmp -Wall -Werror=implicit-function-declaration -Werror=incompatible-pointer-types | ||
LDFLAGS := -flto -O3 -g -fopenmp | ||
LIBS += -lopenblas -fopenmp | ||
endif | ||
|
||
|
||
# Select all C source files | ||
SRCS := $(wildcard *.c) | ||
OBJS := $(SRCS:.c=.o) | ||
|
||
|
||
# ------------------------------------------------------------------------------ | ||
# Makefile rules and targets | ||
# ------------------------------------------------------------------------------ | ||
|
||
.SUFFIXES: .c .o | ||
|
||
$(TARGET): $(OBJS) | ||
$(CC) $(LDFLAGS) $(OBJS) -o $(TARGET) $(LIBS) | ||
|
||
%.o : %.c | ||
$(CC) $(CFLAGS) $(DEFINES) -c $< -o $@ | ||
|
||
clean: | ||
rm -f $(TARGET) *.o | ||
|
||
|
||
.PHONY: clean |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,335 @@ | ||
#include "inverse_iteration.h" | ||
#include "partition.h" | ||
#include "reduce.h" | ||
#include "utils.h" | ||
#include "shifted_Hessenberg_solve.h" | ||
#include "robust.h" | ||
|
||
#include <float.h> | ||
#include <omp.h> | ||
#include <assert.h> | ||
#include <string.h> | ||
|
||
|
||
#define Hnorms(i,j) Hnorms[(i) + (j) * num_tiles] | ||
#define H(i,j) H[(i) + (j) * ldH] | ||
#define vrnorms(rhs, tlrow) vrnorms[(rhs) + (tlrow) * nrhs] | ||
#define vr(i,j) vr[(i) + (size_t)ldvr * (j)] | ||
|
||
static void init_real_eigenvectors( | ||
int n, int nrhs, double *restrict vr, int ldvr, | ||
int num_tiles, double *restrict vrnorms, double eps3) | ||
{ | ||
assert(eps3 > 0); | ||
|
||
// Init eigenvectors. | ||
for (int rhs = 0; rhs < nrhs; rhs++) | ||
for (int i = 0; i < n; i++) | ||
vr(i,rhs) = eps3; | ||
|
||
// Record upper bounds. | ||
for (int i = 0; i < num_tiles; i++) | ||
for (int rhs = 0; rhs < nrhs; rhs++) | ||
vrnorms(rhs,i) = eps3; | ||
} | ||
|
||
static void new_real_starting_vector( | ||
int n, int nrhs, double *restrict vr, int ldvr, | ||
int num_tiles, double *restrict vrnorms, double eps3, int its) | ||
{ | ||
assert(eps3 > 0); | ||
assert(0 <= its && its < n); | ||
|
||
// See LAPACK 3.10 dlaein lines 344--353. | ||
const double tmp = eps3 / (sqrt(n) + 1.0); | ||
for (int rhs = 0; rhs < nrhs; rhs++) { | ||
vr(0,rhs) = eps3; | ||
for (int i = 1; i < n; i++) | ||
vr(i,rhs) = tmp; | ||
vr(n-1-its,rhs) -= eps3 * sqrt(n); | ||
} | ||
|
||
// Record upper bounds. | ||
const double ub = fmax(fmax(eps3, tmp), fabs(tmp - eps3 / sqrt(n))); | ||
for (int i = 0; i < num_tiles; i++) | ||
for (int rhs = 0; rhs < nrhs; rhs++) | ||
vrnorms(rhs,i) = ub; | ||
} | ||
|
||
|
||
static int check_convergence(int nrhs, int num_tiles, const double *restrict vrnorms) | ||
{ | ||
int converged = 1; | ||
|
||
for (int rhs = 0; rhs < nrhs; rhs++) { | ||
if (vrnorms(rhs,0) == 0.0) { | ||
converged = 0; | ||
break; | ||
} | ||
} | ||
|
||
return converged; | ||
} | ||
|
||
|
||
static int separate_nonconverged( | ||
int nrhs, int num_tiles, const double *restrict vrnorms, | ||
double *restrict wr, int n, double *restrict vr, int ldvr) | ||
{ | ||
// Count the converged eigenvectors. | ||
int num_converged = 0; | ||
for (int rhs = 0; rhs < nrhs; rhs++) | ||
if (vrnorms(rhs,0) == 0.0) | ||
num_converged++; | ||
|
||
// This routine should only be reached if a new starting vector is needed. | ||
assert(num_converged < nrhs); | ||
|
||
// Sort wr, vr into converged and non-converged eigenvalue-eigenvector pairs. | ||
double *restrict sorted_wr = (double *) malloc(nrhs * sizeof(double)); | ||
double *restrict sorted_vr = (double *) malloc(ldvr * nrhs * sizeof(double)); | ||
#define sorted_vr(i,j) sorted_vr[(i) + (j) * (size_t)ldvr] | ||
int pos_converged = 0; | ||
int pos_non_converged = num_converged; | ||
|
||
int num_nonconverged = nrhs - num_converged; | ||
|
||
for (int rhs = 0; rhs < nrhs; rhs++) { | ||
if (vrnorms(rhs,0) == 0.0) { | ||
sorted_wr[pos_non_converged] = wr[rhs]; | ||
memcpy(&sorted_vr(0,pos_non_converged), &vr(0,rhs), n * sizeof(double)); | ||
pos_non_converged++; | ||
} | ||
else { | ||
sorted_wr[pos_converged] = wr[rhs]; | ||
memcpy(&sorted_vr(0,pos_converged), &vr(0,rhs), n * sizeof(double)); | ||
pos_converged++; | ||
} | ||
} | ||
assert(pos_converged == num_converged); | ||
assert(pos_non_converged == n); | ||
|
||
// Copy back wr := sorted_wr. | ||
memcpy(wr, sorted_wr, nrhs * sizeof(double)); | ||
|
||
// Copy back vr := vr_sorted. | ||
for (int rhs = 0; rhs < nrhs; rhs++) | ||
memcpy(&vr(0,rhs), &sorted_vr(0,rhs), n * sizeof(double)); | ||
|
||
// Clean up. | ||
free(sorted_wr); | ||
free(sorted_vr); | ||
#undef sorted_vr | ||
|
||
return num_converged; | ||
} | ||
|
||
|
||
void tiled_inverse_iteration( | ||
int n, const double *restrict H, int ldH, | ||
int nrhs, double *restrict wr, | ||
int tlsz, int rhs_tlsz, double *restrict vr, int ldvr) | ||
{ | ||
// Partition H. | ||
int num_tiles = (n + tlsz - 1) / tlsz; | ||
int *first_row = (int *) malloc((num_tiles + 1) * sizeof(int)); | ||
partition(n, num_tiles, tlsz, first_row); | ||
|
||
// Allocate workspace. | ||
double *Hnorms = (double *) malloc(num_tiles * num_tiles * sizeof(double)); | ||
const int max_num_elems = 44000*44000; | ||
int batch_size = max(rhs_tlsz, max_num_elems / ( n * 2 * num_tiles)); | ||
if (batch_size % 2 == 1) { | ||
batch_size--; | ||
} | ||
double *R = (double *) malloc((size_t)n * 2 * num_tiles * batch_size * sizeof(double)); | ||
double *qwork = (double *) malloc((size_t)n * batch_size * 3 * sizeof(double)); | ||
|
||
// Init upper bounds || Hij ||_oo. | ||
for (int tli = 0; tli < num_tiles; tli++) | ||
for (int tlj = 0; tlj < num_tiles; tlj++) | ||
Hnorms(tli, tlj) = -1.0; | ||
|
||
// The starting vectors require || H ||_oo. | ||
double Hnrm = dlange('I', n, n, H, ldH); | ||
|
||
// Prepare initial value of starting vector. | ||
const double eps = DBL_EPSILON / 2; | ||
const double eps3 = Hnrm * eps; | ||
|
||
if (nrhs <= batch_size) { // Non-batched mode. | ||
int num_rhs_tiles = (nrhs + rhs_tlsz - 1) / rhs_tlsz; | ||
int *first_col = (int *) malloc((num_rhs_tiles + 1) * sizeof(int)); | ||
partition(nrhs, num_rhs_tiles, rhs_tlsz, first_col); | ||
partitioning_t p = {.num_tile_rows = num_tiles, | ||
.num_tile_cols = num_rhs_tiles, | ||
.first_row = first_row, | ||
.first_col = first_col}; | ||
|
||
double *vrnorms = (double *) malloc(num_tiles * nrhs * sizeof(double)); | ||
|
||
init_real_eigenvectors(n, nrhs, vr, ldvr, num_tiles, vrnorms, eps3); | ||
|
||
int converged = 0; | ||
int its = 0; | ||
|
||
do { | ||
int num_converged = 0; | ||
|
||
solve_Hessenberg_system_real_shift( | ||
H, ldH, Hnorms, &p, &wr[num_converged], | ||
&vr(0,num_converged), ldvr, vrnorms, | ||
qwork, R); | ||
|
||
// The convergence status is propagated in vrnorms(:,0). | ||
converged = check_convergence(nrhs, num_tiles, vrnorms); | ||
|
||
if (!converged) { // Rare event. | ||
// Sort eigenvalues that have not converged. | ||
num_converged = separate_nonconverged(nrhs, num_tiles, | ||
vrnorms, wr, n, vr, ldvr); | ||
|
||
// Prepare a new starting vector. | ||
nrhs = nrhs - num_converged; | ||
assert(nrhs > 0); | ||
new_real_starting_vector(n, nrhs, &vr(0,num_converged), ldvr, | ||
num_tiles, vrnorms, eps3, its); | ||
|
||
// Update partitioning. | ||
num_rhs_tiles = (nrhs + rhs_tlsz - 1) / rhs_tlsz; | ||
partition(nrhs, num_rhs_tiles, rhs_tlsz, first_col); | ||
p.num_tile_cols = num_rhs_tiles; | ||
|
||
its++; | ||
} | ||
} while(!converged && its < n); | ||
|
||
free(first_col); | ||
free(vrnorms); | ||
} else { // Batched mode. | ||
int all_converged = 0; | ||
double *converged = (double *) malloc(nrhs * sizeof(double)); | ||
|
||
for (int rhs = 0; rhs < nrhs; rhs += batch_size) { | ||
int b = min(batch_size, nrhs - rhs); | ||
int num_rhs_tiles = (b + rhs_tlsz - 1) / rhs_tlsz; | ||
int *first_col = (int *) malloc((num_rhs_tiles + 1) * sizeof(int)); | ||
partition(b, num_rhs_tiles, rhs_tlsz, first_col); | ||
partitioning_t p = {.num_tile_rows = num_tiles, | ||
.num_tile_cols = num_rhs_tiles, | ||
.first_row = first_row, | ||
.first_col = first_col}; | ||
|
||
double *vrnorms = (double *) malloc(num_tiles * nrhs * sizeof(double)); | ||
|
||
// Init the current batch of eigenvectors. | ||
init_real_eigenvectors( | ||
n, b, &vr(0,rhs), ldvr, num_tiles, &vrnorms(rhs,0), eps3); | ||
|
||
solve_Hessenberg_system_real_shift( | ||
H, ldH, Hnorms, &p, &wr[rhs], | ||
&vr(0,rhs), ldvr, &vrnorms(rhs,0), qwork, R); | ||
|
||
// The convergence status is propagated in vrnorms(:,0). | ||
all_converged = check_convergence(b, num_tiles, &vrnorms(rhs,0)); | ||
if(all_converged) { | ||
for (int j = 0; j < b; j++) | ||
converged[rhs + j] = 1; | ||
} | ||
else { // !all_converged | ||
// Record status, non-converged eigenvectors will be treated | ||
// together later. | ||
for (int j = 0; j < b; j++) { | ||
if (vrnorms(rhs + j,0) == 0.0) | ||
converged[rhs + j] = 0.0; | ||
else | ||
converged[rhs + j] = 1.0; | ||
} | ||
} | ||
|
||
free(first_col); | ||
free(vrnorms); | ||
} // for rhs | ||
|
||
// Check if all eigenvectors have converged. | ||
int num_converged = 0; | ||
for (int j = 0; j < nrhs; j++) | ||
if (converged[j]) | ||
num_converged++; | ||
|
||
// Treat all non-converged eigenvectors. | ||
if (num_converged < nrhs) { | ||
// Sort eigenvalues that have not converged. Make sure that there | ||
// is enough workspace available to execute the sorting. | ||
free(R); | ||
separate_nonconverged(nrhs, num_tiles, converged, wr, n, vr, ldvr); | ||
|
||
// Reallocate the workspace. | ||
R = (double *) malloc((size_t)n * 2 * num_tiles * batch_size * sizeof(double)); | ||
|
||
all_converged = 0; | ||
int its = 0; | ||
|
||
do { | ||
// Prepare a new starting vector. | ||
nrhs = nrhs - num_converged; | ||
assert(nrhs > 0); | ||
double *vrnorms = (double *) malloc(num_tiles * nrhs * sizeof(double)); | ||
|
||
|
||
new_real_starting_vector(n, nrhs, &vr(0,num_converged), ldvr, | ||
num_tiles, vrnorms, eps3, its); | ||
|
||
// Repartition. | ||
int num_rhs_tiles = (nrhs + rhs_tlsz - 1) / rhs_tlsz; | ||
int *first_col = (int *) malloc((num_rhs_tiles + 1) * sizeof(int)); | ||
partition(nrhs, num_rhs_tiles, rhs_tlsz, first_col); | ||
partitioning_t p = {.num_tile_rows = num_tiles, | ||
.num_tile_cols = num_rhs_tiles, | ||
.first_row = first_row, | ||
.first_col = first_col}; | ||
|
||
// Solve. | ||
solve_Hessenberg_system_real_shift( | ||
H, ldH, Hnorms, &p, &wr[num_converged], | ||
&vr(0,num_converged), ldvr, vrnorms, | ||
qwork, R); | ||
|
||
its++; | ||
|
||
// The convergence status is propagated in vrnorms(:,0). | ||
all_converged = check_convergence(nrhs, num_tiles, vrnorms); | ||
|
||
if (!all_converged) { | ||
// Sort eigenvalues that have not converged. | ||
num_converged += separate_nonconverged( | ||
nrhs, num_tiles, vrnorms, &wr[num_converged], n, | ||
&vr(0,num_converged), ldvr); | ||
|
||
// Prepare a new starting vector. | ||
nrhs = nrhs - num_converged; | ||
assert(nrhs > 0); | ||
new_real_starting_vector(n, nrhs, &vr(0,num_converged), ldvr, | ||
num_tiles, vrnorms, eps3, its); | ||
|
||
// Update partitioning. | ||
num_rhs_tiles = (nrhs + rhs_tlsz - 1) / rhs_tlsz; | ||
partition(nrhs, num_rhs_tiles, rhs_tlsz, first_col); | ||
p.num_tile_cols = num_rhs_tiles; | ||
} | ||
|
||
// Clean up. | ||
free(vrnorms); | ||
free(first_col); | ||
} while(!all_converged && its < n); | ||
|
||
} | ||
free(converged); | ||
} | ||
|
||
// Clean up. | ||
free(first_row); | ||
free(Hnorms); | ||
free(R); | ||
free(qwork); | ||
} |
Oops, something went wrong.