Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for GPTBigCodeForCausalLM #83

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
107 changes: 77 additions & 30 deletions mergekit/architecture.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,35 +37,53 @@ def layer_weight_formats(self) -> List[str]:
...

@abstractmethod
def embed_weights(self) -> List[str]:
def input_embed(self) -> Optional[str]:
...

@abstractmethod
def output_embed(self) -> Optional[str]:
...

def embed_weights(self) -> List[str]:
return [self.input_embed(), self.output_embed()]

def num_layers(self, config: PretrainedConfig) -> int:
return config.num_hidden_layers

def num_layers_config_key(self) -> str:
"""Key in config that represents number of layers"""
return "num_hidden_layers"

def possible_name_prefix(self) -> Optional[str]:
"""
Return a prefix that is allowed but not required for tensor names.
"""
return None


class StaticTensorNames(ArchitectureInfo, BaseModel, frozen=True):
name: str
names: List[str]

pre_weight_names: List[str] # weights applied before first layer
post_weight_names: List[str] # weights applied after last layer
embed_weight_names: List[str] # weights for embed/lm_head
input_embed_name: str
output_embed_name: Optional[str]
layer_prefix_format: str
layer_weight_suffixes: List[str]
num_layers_key: Optional[str] = None
allowable_prefix: Optional[str] = None

def pre_weights(self) -> List[str]:
return self.pre_weight_names

def post_weights(self) -> List[str]:
return self.post_weight_names

def embed_weights(self) -> List[str]:
return self.embed_weight_names
def input_embed(self) -> Optional[str]:
return self.input_embed_name

def output_embed(self) -> Optional[str]:
return self.output_embed_name

def layer_weight_formats(self) -> List[str]:
res = []
Expand All @@ -81,12 +99,16 @@ def num_layers_config_key(self) -> str:
def num_layers(self, config: PretrainedConfig) -> int:
return getattr(config, self.num_layers_config_key())

def possible_name_prefix(self) -> Optional[str]:
return self.allowable_prefix


LLAMA_INFO = StaticTensorNames(
name="LlamaForCausalLM",
names=["LlamaForCausalLM", "LLaMAForCausalLM"],
pre_weight_names=["model.embed_tokens.weight"],
post_weight_names=["model.norm.weight", "lm_head.weight"],
embed_weight_names=["model.embed_tokens.weight", "lm_head.weight"],
input_embed_name="model.embed_tokens.weight",
output_embed_name="lm_head.weight",
layer_prefix_format="model.layers.{idx}",
layer_weight_suffixes=[
"input_layernorm.weight",
Expand All @@ -102,34 +124,36 @@ def num_layers(self, config: PretrainedConfig) -> int:
)

MISTRAL_INFO = StaticTensorNames(
name="MistralForCausalLM",
names=["MistralForCausalLM"],
# lol
**LLAMA_INFO.model_dump(exclude=["name"]),
**LLAMA_INFO.model_dump(exclude=["names"]),
)


STABLELM_INFO = StaticTensorNames(
name="StableLMEpochForCausalLM",
names=["StableLMEpochForCausalLM"],
post_weight_names=LLAMA_INFO.post_weight_names + ["model.norm.bias"],
layer_weight_suffixes=LLAMA_INFO.layer_weight_suffixes
+ [
"input_layernorm.bias",
"post_attention_layernorm.bias",
],
**LLAMA_INFO.model_dump(
exclude=["name", "layer_weight_suffixes", "post_weight_names"]
exclude=["names", "layer_weight_suffixes", "post_weight_names"]
),
)


GPT_NEOX_INFO = StaticTensorNames(
name="GPTNeoXForCausalLM",
names=["GPTNeoXForCausalLM"],
pre_weight_names=["gpt_neox.embed_in.weight"],
post_weight_names=[
"gpt_neox.final_layer_norm.bias",
"gpt_neox.final_layer_norm.weight",
"embed_out.weight",
],
embed_weight_names=["gpt_neox.embed_in.weight", "embed_out.weight"],
input_embed_name="gpt_neox.embed_in.weight",
output_embed_name="embed_out.weight",
layer_prefix_format="gpt_neox.layers.{idx}",
layer_weight_suffixes=sum(
(
Expand All @@ -148,11 +172,13 @@ def num_layers(self, config: PretrainedConfig) -> int:
+ ["attention.bias", "attention.masked_bias", "attention.rotary_emb.inv_freq"],
)


GPT2_INFO = StaticTensorNames(
name="GPT2LMHeadModel",
names=["GPT2Model", "GPT2LMHeadModel"],
pre_weight_names=["wte.weight", "wpe.weight"],
post_weight_names=["ln_f.weight", "ln_f.bias"],
embed_weight_names=["wte.weight"],
input_embed_name="wte.weight",
output_embed_name="lm_head.weight",
post_weight_names=["ln_f.weight", "ln_f.bias", "lm_head.weight"],
layer_prefix_format="h.{idx}",
layer_weight_suffixes=[
"attn.c_attn.weight",
Expand All @@ -167,32 +193,46 @@ def num_layers(self, config: PretrainedConfig) -> int:
"mlp.c_proj.bias",
"mlp.c_fc.weight",
"mlp.c_fc.bias",
"mlp.c_proj.weight",
"mlp.c_proj.bias",
],
num_layers_key="n_layer",
allowable_prefix="transformer.",
)

GPT2_SEQCLASS_INFO = StaticTensorNames(
name="GPT2ForSequenceClassification",
names=["GPT2ForSequenceClassification"],
pre_weight_names=["transformer.wte.weight", "transformer.wpe.weight"],
input_embed_name="transformer.wte.weight",
output_embed_name=None,
post_weight_names=[
"transformer.ln_f.weight",
"transformer.ln_f.bias",
"score.weight",
],
layer_prefix_format="transformer.h.{idx}",
embed_weight_names=GPT2_INFO.embed_weight_names,
layer_weight_suffixes=GPT2_INFO.layer_weight_suffixes,
num_layers_key=GPT2_INFO.num_layers_key,
)

GPT_BIGCODE_INFO = StaticTensorNames(
names=["GPTBigCodeForCausalLM"],
output_embed_name="lm_head.weight",
post_weight_names=[
"transformer.ln_f.weight",
"transformer.ln_f.bias",
"lm_head.weight",
],
**GPT2_SEQCLASS_INFO.model_dump(
exclude=["names", "output_embed_name", "post_weight_names"]
),
)


QWEN_INFO = StaticTensorNames(
name="QWenLMHeadModel",
names=["QWenLMHeadModel"],
pre_weight_names=["transformer.wte.weight"],
input_embed_name="transformer.wte.weight",
output_embed_name="lm_head.weight",
post_weight_names=["transformer.ln_f.weight", "lm_head.weight"],
embed_weight_names=["transformer.wte.weight", "lm_head.weight"],
layer_prefix_format="transformer.h.{idx}",
layer_weight_suffixes=[
"attn.c_attn.bias",
Expand All @@ -206,8 +246,9 @@ def num_layers(self, config: PretrainedConfig) -> int:
],
)


CHATGLM_INFO = StaticTensorNames(
name="ChatGLMModel",
names=["ChatGLMModel"],
pre_weight_names=[
"transformer.embedding.word_embeddings.weight",
"transformer.rotary_pos_emb.inv_freq",
Expand All @@ -216,10 +257,8 @@ def num_layers(self, config: PretrainedConfig) -> int:
"transformer.encoder.final_layernorm.weight",
"transformer.output_layer.weight",
],
embed_weight_names=[
"transformer.embedding.word_embeddings.weight",
"transformer.output_layer.weight",
],
input_embed_name="transformer.embedding.word_embeddings.weight",
output_embed_name="transformer.output_layer.weight",
layer_prefix_format="transformer.encoder.layers.{idx}",
layer_weight_suffixes=[
"input_layernorm.weight",
Expand Down Expand Up @@ -262,6 +301,12 @@ def embed_weights(self) -> List[str]:
f"layers.{fake_layer_idx}.linear.bias",
]

def input_embed(self) -> Optional[str]:
return self.embed_weights()[0]

def output_embed(self) -> Optional[str]:
return self.embed_weights()[1]

def layer_weight_formats(self) -> List[str]:
return [
("layers.{idx}." + suffix)
Expand All @@ -288,15 +333,16 @@ def num_layers_config_key(self) -> str:


PHI2_INFO = StaticTensorNames(
name="PhiForCausalLM",
names=["PhiForCausalLM"],
pre_weight_names=["transformer.embd.wte.weight"],
post_weight_names=[
"lm_head.linear.bias",
"lm_head.linear.weight",
"lm_head.ln.bias",
"lm_head.ln.weight",
],
embed_weight_names=["lm_head.linear.weight", "transformer.embd.wte.weight"],
input_embed_name="transformer.embd.wte.weight",
output_embed_name="lm_head.linear.weight",
layer_prefix_format="transformer.h.{idx}",
layer_weight_suffixes=[
"ln.bias",
Expand Down Expand Up @@ -331,9 +377,10 @@ def get_architecture_info(config: PretrainedConfig) -> StaticTensorNames:
CHATGLM_INFO,
STABLELM_INFO,
PHI2_INFO,
GPT_BIGCODE_INFO,
]
for arch in supported:
if arch.name == arch_name:
if arch_name in arch.names:
return arch

raise RuntimeError(f"Unsupported architecture {arch_name}")
63 changes: 58 additions & 5 deletions mergekit/graph.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@
from pydantic import BaseModel
from typing_extensions import Protocol

from mergekit.architecture import ArchitectureInfo, get_architecture_info
from mergekit.common import ModelReference
from mergekit.io import LazyTensorLoader, TensorWriter

Expand Down Expand Up @@ -91,11 +92,32 @@ def generate_rule(self, component: TensorReference) -> Optional[Operation]:
...


def _remap_tensor_name(
name: str, arch_info: ArchitectureInfo, tensor_paths: Dict[str, str]
) -> Optional[str]:
if name in tensor_paths:
return name
pp = arch_info.possible_name_prefix()
if pp and (pp + name) in tensor_paths:
return pp + name

e_out = arch_info.output_embed()
e_in = arch_info.input_embed()
if e_out and name == e_out:
# if output embedding tensor is missing, assume weights are tied
if e_in in tensor_paths:
return e_in
if pp and (pp + e_in) in tensor_paths:
return pp + e_in
return None


class LoadTensorRule(ProceduralRule):
"""Rule for loading tensors from input models."""

model: ModelReference
tensor_paths: Dict[str, str]
dtype: torch.dtype

def __init__(
self,
Expand All @@ -117,6 +139,7 @@ def can_generate_rule(self, component: TensorReference) -> bool:
def generate_rule(self, component: TensorReference) -> Operation:
if not self.can_generate_rule(component):
return None

return Operation(
function="load_tensor",
inputs=[],
Expand Down Expand Up @@ -192,6 +215,8 @@ class Executor:
loaders: Dict[ModelReference, LazyTensorLoader]
targets: List[TensorReference]
operations: Dict[str, OperationProtocol]
arch_info: ArchitectureInfo
real_tensor_names: Dict[TensorReference, str]
low_cpu_memory: bool = False

def __init__(
Expand All @@ -211,6 +236,10 @@ def __init__(
if lora_cache_dir is None and transformers_cache_dir is not None:
lora_cache_dir = transformers_cache_dir

self.arch_info = get_architecture_info(
models[0].config(trust_remote_code=trust_remote_code)
)

self.targets = targets
self.loaders = {
ref: LazyTensorLoader(
Expand All @@ -225,7 +254,11 @@ def __init__(
}
for model, loader in self.loaders.items():
rules.procedural.append(
LoadTensorRule(model, loader.index.tensor_paths, dtype=dtype)
LoadTensorRule(
model,
loader.index.tensor_paths,
dtype=dtype,
)
)

if operations is None:
Expand All @@ -234,6 +267,19 @@ def __init__(
self.rules = rules
self.cuda = cuda
self.low_cpu_memory = low_cpu_memory
self.real_tensor_names = {}

def get_real_name(self, tensor_ref: TensorReference) -> str:
if not tensor_ref.model:
return tensor_ref.key

if tensor_ref not in self.real_tensor_names:
self.real_tensor_names[tensor_ref] = _remap_tensor_name(
tensor_ref.key,
self.arch_info,
self.loaders[tensor_ref.model].index.tensor_paths,
)
return self.real_tensor_names[tensor_ref]

def run(self, out_path: str, max_shard_size: int, clone_tensors: bool = False):
"""
Expand Down Expand Up @@ -327,9 +373,10 @@ def _load_tensor(self, operation: Operation):
"""Load a tensor from an input model."""
assert operation.function == "load_tensor"

res = self.loaders[operation.kwargs["model"]].get_tensor(
operation.kwargs["key"]
tensor_ref = TensorReference(
model=operation.kwargs["model"], key=operation.kwargs["key"]
)
res = self.loaders[tensor_ref.model].get_tensor(self.get_real_name(tensor_ref))
if operation.kwargs["dtype"]:
res = res.to(dtype=operation.kwargs["dtype"])

Expand All @@ -346,8 +393,9 @@ def _compare_key(self, ref: TensorReference):
at any given time.
"""
if ref.model:
tensor_name = self.get_real_name(ref)
shard_key = _normalized_shard_name(
self.loaders[ref.model].index.tensor_paths[ref.key]
self.loaders[ref.model].index.tensor_paths[tensor_name]
)
else:
shard_key = ""
Expand Down Expand Up @@ -389,7 +437,12 @@ def _visit(node: TensorReference):
if node in ops:
return

operation = self.rules.get(node)
real_name = self.get_real_name(node)
if not real_name:
raise RuntimeError(
f"Model {node.model} does not contain tensor {node.key}"
)
operation = self.rules.get(TensorReference(model=node.model, key=real_name))
if not operation:
raise RuntimeError(f"No rule to produce {node}")
ops[node] = operation
Expand Down