-
Notifications
You must be signed in to change notification settings - Fork 102
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 1a46a88
Showing
81 changed files
with
7,952 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
.idea/ |
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
from pyspark.sql import SparkSession | ||
from pyspark.sql.types import * | ||
from pyspark.ml.feature import StringIndexer | ||
from pyspark.ml import Pipeline | ||
from sklearn.ensemble import RandomForestClassifier | ||
from sklearn.metrics import roc_auc_score, average_precision_score | ||
import numpy as np | ||
import pandas as pd | ||
import pickle | ||
import cdsw | ||
import os | ||
import time | ||
|
||
spark = SparkSession.builder \ | ||
.appName("Predictive Maintenance") \ | ||
.getOrCreate() | ||
|
||
# read 21 colunms large file from HDFS | ||
schemaData = StructType([StructField("0", DoubleType(), True), | ||
StructField("1", DoubleType(), True), | ||
StructField("2", DoubleType(), True), | ||
StructField("3", DoubleType(), True), | ||
StructField("4", DoubleType(), True), | ||
StructField("5", DoubleType(), True), | ||
StructField("6", DoubleType(), True), | ||
StructField("7", DoubleType(), True), | ||
StructField("8", DoubleType(), True), | ||
StructField("9", DoubleType(), True), | ||
StructField("10", DoubleType(), True), | ||
StructField("11", DoubleType(), True), | ||
StructField("12", IntegerType(), True)]) | ||
|
||
iot_data = spark.read.schema(schemaData).csv('/user/' | ||
+ os.environ['HADOOP_USER_NAME'] | ||
+ '/historical_iot.txt') | ||
|
||
|
||
# Create Pipeline | ||
label_indexer = StringIndexer(inputCol = '12', outputCol = 'label') | ||
plan_indexer = StringIndexer(inputCol = '1', outputCol = '1_indexed') | ||
pipeline = Pipeline(stages=[plan_indexer, label_indexer]) | ||
indexed_data = pipeline.fit(iot_data).transform(iot_data) | ||
(train_data, test_data) = indexed_data.randomSplit([0.7, 0.3]) | ||
|
||
pdTrain = train_data.toPandas() | ||
pdTest = test_data.toPandas() | ||
|
||
# 12 features | ||
features = ["1_indexed", | ||
"0", | ||
"2", | ||
"3", | ||
"4", | ||
"5", | ||
"6", | ||
"7", | ||
"8", | ||
"9", | ||
"10", | ||
"11"] | ||
|
||
param_numTrees = int(sys.argv[1]) | ||
param_maxDepth = int(sys.argv[2]) | ||
param_impurity = 'gini' | ||
|
||
randF=RandomForestClassifier(n_jobs=10, | ||
n_estimators=param_numTrees, | ||
max_depth=param_maxDepth, | ||
criterion = param_impurity, | ||
random_state=0) | ||
|
||
cdsw.track_metric("numTrees",param_numTrees) | ||
cdsw.track_metric("maxDepth",param_maxDepth) | ||
cdsw.track_metric("impurity",param_impurity) | ||
|
||
# Fit and Predict | ||
randF.fit(pdTrain[features], pdTrain['label']) | ||
predictions=randF.predict(pdTest[features]) | ||
|
||
#temp = randF.predict_proba(pdTest[features]) | ||
|
||
pd.crosstab(pdTest['label'], predictions, rownames=['Actual'], colnames=['Prediction']) | ||
|
||
list(zip(pdTrain[features], randF.feature_importances_)) | ||
|
||
|
||
y_true = pdTest['label'] | ||
y_scores = predictions | ||
auroc = roc_auc_score(y_true, y_scores) | ||
ap = average_precision_score (y_true, y_scores) | ||
print(auroc, ap) | ||
|
||
cdsw.track_metric("auroc", auroc) | ||
cdsw.track_metric("ap", ap) | ||
|
||
pickle.dump(randF, open("iot_model.pkl","wb")) | ||
|
||
cdsw.track_file("iot_model.pkl") | ||
|
||
time.sleep(15) | ||
print("Slept for 15 seconds.") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,9 @@ | ||
import pickle | ||
import numpy as np | ||
|
||
model = pickle.load(open('iot_model.pkl', 'rb')) | ||
|
||
def predict(args): | ||
account=np.array(args["feature"].split(",")).reshape(1,-1) | ||
return {"result" : model.predict(account)[0]} | ||
|
Oops, something went wrong.