A simple REST API that makes machine learning models accessible through easy-to-use endpoints.
IntelliAPI lets you interact with different machine learning models through a REST API. We built it with Django and focused on making it straightforward to use and extend.
- Python 3.x
- Django
- Additional packages listed in
requirements.txt
-
Clone the repository:
git clone https://github.com/asndiallo/IntelliAPI.git cd IntelliAPI
-
Set up a virtual environment:
# Using conda conda create --name intelliapi_env python=3.10 conda activate intelliapi_env # Or using venv python3 -m venv intelliapi_env source intelliapi_env/bin/activate # On Unix/MacOS intelliapi_env\Scripts\activate # On Windows
-
Install dependencies:
pip install -r requirements.txt
-
Create your environment file:
- Copy
.env.example
to.env
- Fill in your configuration details
- Copy
-
Set up the database:
python manage.py makemigrations python manage.py migrate
-
Start the server:
python manage.py runserver
Check out our Heart Disease Predictor API guide for a practical example of how to use the API.
We welcome contributions! Here's how:
- Fork the repository
- Create your feature branch (
git checkout -b my-new-feature
) - Make your changes
- Commit (
git commit -am 'Add some feature'
) - Push to your branch (
git push origin my-new-feature
) - Open a Pull Request
MIT License - see LICENSE file
Questions? Contact me at [email protected]