Skip to content

Tools for training and evaluating robotic manipulation policy models

Notifications You must be signed in to change notification settings

au-rmr/aurmr_policy_models

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AURMR Policy Models

Tools and framework for training continuous visiomotor policies as part of Amazon-UW Robotic Manipulation Research (AURMR).

Currently supported models include Diffusion Policy.

Currently supported training algorithms include BC, DPPO, RLPD, and I-DQL.

Installation

  1. Clone the repository
git clone [email protected]:au-rmr/aurmr_policy_models.git
cd aurmr_policy_models
  1. Create environment and install package
conda create -n apm python=3.8 -y
conda activate apm
pip install -e .
  1. Configure data root path
export AURMR_POLICY_MODELS_DATA_ROOT=/data/aurmr_policy_models/

Basic Usage Guide

All experiments have reproducable configurations under conf/experiments.

Collect data from expert planner

python -m aurmr_policy_models.scripts.collect_agent_data \
    experiment=point_mass_expert_agent \
    collection.num_episodes=5000 \
    collection.collection_name="point_mass_expert_5000"

Pre-train with collected dataset

python -m aurmr_policy_models.scripts.train_model \
    experiment=point_mass_diffusion_pretrain \
    train_dataset.file_paths='["/data/aurmr_policy_models/collections/point_mass_expert_5000.hdf5"]' \
    trainer.output_dir="/data/aurmr_policy_models/training_runs/point_mass_iter0_expert5k/"

Evaluate pre-trained model

python -m aurmr_policy_models.scripts.evaluate_agent \
    experiment=point_mass_diffusion \
    model.network_path="/data/aurmr_policy_models/training_runs/point_mass_iter0_expert5k/final_model.pt" \
    env.render=True

Fine-tune with PPO

python -m aurmr_policy_models.scripts.train_model \
    experiment=point_mass_diffusion_ppo \
    model.network_path="/data/aurmr_policy_models/training_runs/point_mass_iter0_expert10k/final_model.pt"

About

Tools for training and evaluating robotic manipulation policy models

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages