Tools and framework for training continuous visiomotor policies as part of Amazon-UW Robotic Manipulation Research (AURMR).
Currently supported models include Diffusion Policy.
Currently supported training algorithms include BC, DPPO, RLPD, and I-DQL.
- Clone the repository
git clone [email protected]:au-rmr/aurmr_policy_models.git
cd aurmr_policy_models
- Create environment and install package
conda create -n apm python=3.8 -y
conda activate apm
pip install -e .
- Configure data root path
export AURMR_POLICY_MODELS_DATA_ROOT=/data/aurmr_policy_models/
All experiments have reproducable configurations under conf/experiments
.
python -m aurmr_policy_models.scripts.collect_agent_data \
experiment=point_mass_expert_agent \
collection.num_episodes=5000 \
collection.collection_name="point_mass_expert_5000"
python -m aurmr_policy_models.scripts.train_model \
experiment=point_mass_diffusion_pretrain \
train_dataset.file_paths='["/data/aurmr_policy_models/collections/point_mass_expert_5000.hdf5"]' \
trainer.output_dir="/data/aurmr_policy_models/training_runs/point_mass_iter0_expert5k/"
python -m aurmr_policy_models.scripts.evaluate_agent \
experiment=point_mass_diffusion \
model.network_path="/data/aurmr_policy_models/training_runs/point_mass_iter0_expert5k/final_model.pt" \
env.render=True
python -m aurmr_policy_models.scripts.train_model \
experiment=point_mass_diffusion_ppo \
model.network_path="/data/aurmr_policy_models/training_runs/point_mass_iter0_expert10k/final_model.pt"