Skip to content

This repository is intended to show short or mid-short question and answer about machine learning and artificial intelligence in general. You are more than welcomed to add new Q&A and new ML algorithms.

License

Notifications You must be signed in to change notification settings

bayethiernodiop/ML-question-answering

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 

Repository files navigation

Machine learning Question & Answering

Table of contents

Shallow learning

In a very simplistic way, in shallow learning algorithms, input features are not "changed", so the algorithm try to search different parameters and/or way to separate the observation in the dataset so that the resulting model can separate and predict new observations by using the parameters and patterns learned whil training time. In other words, the number of parameters is mostly bounded by the number of feautures (input dimension space).

Deep learning(Neural Networks)

Comparing deep learning to shallow learning definition given above, again in a very simplistic term, the input features are now changing in many ways during training, that means the algorithm keep trying to change the input features to have a better representation of the input data, and this process of learning new useful features is repeated as many time as we want. The repetition of this process is what lead us to depp learning because the algorithm is "always" trying to learn new features based on the precedent created features. For every new set of features, new parameters are created and learned through traininig, deep learning is "just" a fancy way of saying the algorithm has lot of parameters.

General knowlege

About

This repository is intended to show short or mid-short question and answer about machine learning and artificial intelligence in general. You are more than welcomed to add new Q&A and new ML algorithms.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published