All images should use Alpine as the base image.
For building bioinformatics-related images, use Mamba instead of Conda.
Do not set a mirror source, and the image can be built in stages to aim for the smallest Dockerfile.
Stop all Docker containers
docker ps -a | grep "Exited" | awk '{print $1 }'|xargs docker stop
delete all containers
docker ps -a | grep "Exited" | awk '{print $1 }'|xargs docker rm
disable Cache with --no-cache
docker build --no-cache -t my_image .
clean Up Build Cache
docker builder prune -f
save and load images
docker save -o my_ubuntu_v3.tar runoob/ubuntu:v3
docker load --input my_ubuntu_v3.tar
minimal bioinformatics environment
FROM alpine:latest
RUN apk update && \
apk add --no-cache bash openjdk21 git && mkdir -p /lib64/ /ref/ /script/ /raw_data/ /outdir/ && \
wget -q -O /etc/apk/keys/sgerrand.rsa.pub https://alpine-pkgs.sgerrand.com/sgerrand.rsa.pub && \
wget https://github.com/sgerrand/alpine-pkg-glibc/releases/download/2.35-r1/glibc-2.35-r1.apk && \
apk add --no-cache --force-overwrite glibc-2.35-r1.apk && \
rm glibc-2.35-r1.apk && ln -s /usr/glibc-compat/lib/* /lib64/ && \
wget -q -O /opt/Miniforge3-Linux-x86_64.sh https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-x86_64.sh && \
bash /opt/Miniforge3-Linux-x86_64.sh -f -b -p /opt/conda/ && rm -rf /opt/Miniforge3-Linux-x86_64.sh /var/cache/apk/*
metagenomic data analysis
FROM alpine:latest
RUN apk add --no-cache bash && mkdir -p /lib64/ /ref/ /script/ /raw_data/ /outdir/ && \
wget -q -O /etc/apk/keys/sgerrand.rsa.pub https://alpine-pkgs.sgerrand.com/sgerrand.rsa.pub && \
wget https://github.com/sgerrand/alpine-pkg-glibc/releases/download/2.35-r1/glibc-2.35-r1.apk && \
apk add --no-cache --force-overwrite glibc-2.35-r1.apk && rm glibc-2.35-r1.apk && ln -s /usr/glibc-compat/lib/* /lib64/ && \
wget -q -O /opt/Miniforge3-Linux-x86_64.sh https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-x86_64.sh && \
bash /opt/Miniforge3-Linux-x86_64.sh -f -b -p /opt/conda/ && rm -rf /opt/Miniforge3-Linux-x86_64.sh /var/cache/apk/* && \
/opt/conda/bin/conda install bioconda::diamond bioconda::pear && \
/opt/conda/bin/mamba create --name rgi --channel conda-forge --channel bioconda --channel defaults rgi && \
/opt/conda/bin/conda config --add channels ursky && \
/opt/conda/bin/mamba create -y --name metawrap --channel ursky \
--channel conda-forge --channel bioconda --channel defaults blas=2.5=mkl biopython metawrap-mg=1.3.2 checkm-genome && \
/opt/conda/bin/mamba create --name gtdbtk --channel conda-forge --channel bioconda --channel defaults gtdbtk && \
/opt/conda/bin/mamba create --name metaphlan --channel conda-forge --channel bioconda --channel defaults metaphlan && \
/opt/conda/bin/mamba run -n rgi mamba install --channel conda-forge --channel bioconda --channel defaults staramr \
quast minimap2 megahit cd-hit spades freebayes fastqtk seqtk bbmap fastp fastqc prinseq cutadapt multiqc trimmomatic \
bcftools prokka covtobed fastani megan kraken2 krakentools krona bracken drep coverm && \
/opt/conda/bin/conda clean -a -y && /opt/conda/bin/mamba clean -a -y
ENV LD_LIBRARY_PATH=/lib/:/lib64/:$LD_LIBRARY_PATH
COVID-19 and other microbiome detection based on amplicon methods is as follows. This is a good example of building the image in stages.
FROM alpine AS nextclade
# glibc+conda+nextclade
RUN apk update && \
apk add --no-cache bash openjdk21 git && mkdir -p /lib64/ /ref/ /script/ /raw_data/ /outdir/ && \
wget -q -O /etc/apk/keys/sgerrand.rsa.pub https://alpine-pkgs.sgerrand.com/sgerrand.rsa.pub && \
wget https://github.com/sgerrand/alpine-pkg-glibc/releases/download/2.35-r1/glibc-2.35-r1.apk && \
apk add --no-cache --force-overwrite glibc-2.35-r1.apk && \
rm glibc-2.35-r1.apk && ln -s /usr/glibc-compat/lib/* /lib64/ && \
wget -q -O /opt/Miniforge3-Linux-x86_64.sh https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-x86_64.sh && \
bash /opt/Miniforge3-Linux-x86_64.sh -f -b -p /opt/conda/ && rm -rf /opt/Miniforge3-Linux-x86_64.sh /var/cache/apk/* && \
cd /bin/ && wget -O nextclade https://github.com/nextstrain/nextclade/releases/latest/download/nextclade-x86_64-unknown-linux-musl && chmod u+x ./nextclade
FROM nextclade AS pangolin
RUN git clone https://github.com/cov-lineages/pangolin.git && cd pangolin/ && \
/opt/conda/bin/mamba env create -f environment.yml --name pangolin && \
/opt/conda/envs/pangolin/bin/pip install . && rm -rf /opt/pangolin/ && \
/opt/conda/bin/conda clean -a -y
FROM pangolin AS micro2amplicon
COPY jvarkit.jar /software/
RUN /opt/conda/bin/mamba install --channel conda-forge --channel bioconda --channel defaults ivar=1.3 trimmomatic \
bowtie2 bbmap fastp seqtk samtools bedtools bcftools bwa prinseq cutadapt drep
RUN /opt/conda/bin/pip3 install seaborn matplotlib numpy pysam pandas