https://doi.org/10.1007/978-3-031-71167-1_19
Generating vector representations (embeddings) of OWL ontologies is
a growing task due to its applications in predicting missing facts
and knowledge-enhanced learning in fields such as
bioinformatics. The underlying semantics of OWL ontologies is
expressed using Description Logics (DLs). Initial approaches to
generate embeddings relied on constructing a graph out of
ontologies, neglecting the semantics of the logic therein. Recent
semantic-preserving embedding methods often target lightweight DL
languages like
- Python >= 3.8
- mOWL
cd catE
conda env create -f environment.yml
conda activate cate
The data can be obtained from the following Zenodod repository: https://zenodo.org/records/13766937 After downloading, decompresss the file with the following command:
tar -xzvf use_cases.tar.gz
- ORE1
run_cat_membership.py --batch_size=32768 --emb_dim=200 --loss_type=normal --lr=0.0001 --margin=1 --num_negs=4 --use_case=ore1
- GO
python run_cat_completion.py --batch_size=32768 --emb_dim=200 --loss_type=normal --lr=1e-05 --margin=1 --num_negs=2 --use_case=go -ns
- FoodOn
python run_cat_completion.py --batch_size=8192 --emb_dim=200 --loss_type=normal --lr=0.0001 --margin=1 --num_negs=2 --use_case=foodon -ns
- PPI
python run_cat_ppi.py --batch_size=65536 --emb_dim=200 --loss_type=normal --lr=0.0001 --margin=0.1 --num_negs=2 -ns
@InProceedings{10.1007/978-3-031-71167-1_19,
author="Zhapa-Camacho, Fernando
and Hoehndorf, Robert",
editor="Besold, Tarek R.
and d'Avila Garcez, Artur
and Jimenez-Ruiz, Ernesto
and Confalonieri, Roberto
and Madhyastha, Pranava
and Wagner, Benedikt",
title="Lattice-Preserving {\$}{\$}{\backslash}mathcal {\{}ALC{\}}{\$}{\$}Ontology Embeddings",
booktitle="Neural-Symbolic Learning and Reasoning",
year="2024",
publisher="Springer Nature Switzerland",
address="Cham",
pages="355--369",
isbn="978-3-031-71167-1"
}